Exercice N°1:

A/ Préparation du mélange initial :

On veut mélanger 0,5 mole de pentan-1-ol $C_5H_{12}O$ et 0,5 mole d'acide méthanoïque H_2CO_2 .

1-Montrer que les volumes d'alcool et d'acide mélangés sont respectivement 55cm^3 et $19,2 \text{ cm}^3$ On donne : M(C) = 12g.mol^{-1} , M(H) = 1g.mol^{-1} , M(O) = 16g.mol^{-1}

Masse volumique de l'alcool : ρ_{al} = 0,8 g.cm⁻³ et la masse volumique de l'acide est ρ_{ac} = 1,2 g.cm⁻³.

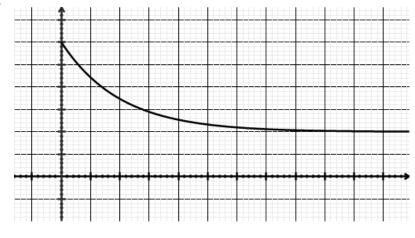
2-Pourquoi le ballon dans lequel se fait le mélange doit-il être placé dans la glace au cours de cette préparation ?

B/ Estérification à chaud et à température constante : Le mélange précédent est retiré de la glace puis placé dans un bain marie d'eau chaude à une température constante.

1/ On prélève un volume $V = 2 \text{cm}^3$ du mélange toute les cinq minutes et après refroidissement, on dose l'acide restant avec une solution d'hydroxyde de sodium de concentration molaire $C_B = 1$ mol.L⁻¹ et en présence de phénolphtaléine.

- a- Quel est le but de ce refroidissement ?
- b- Faire un schéma annoté du dispositif du dosage.
- c- Quelle coloration doit -on observer pour repérer le point d'équivalence ?
- 2/ Calculer la quantité d'acide n₀ contenue dans 2cm³ du mélange.
- 3/ Dresser un tableau descriptif d'évolution du système chimique au cours du temps.
- 4 / On donne la constante d'équilibre relative à la réaction étudiée : K = 4.
- a- Déterminer l'avancement final x_f de la réaction lorsque le système chimique est en état d'équilibre.
- b- Calculer l'avancement maximal x_{max} de la réaction étudiée puis en déduire le taux d'avancement final.

5/a- Calculer la quantité d'acide restant dans 2 cm³ du mélange lorsque le système chimique est en état d'équilibre.


c- En déduire la valeur du volume V_{BE} versé pour doser l'acide restant à l'équilibre.

EXERCICE N°2:

On réalise un mélange équimolaire de méthanoate d'éthyle ($HCOOC_2H_5$) et d'eau et on le répartit en plusieurs ampoules identiques que l'on ferme et que l'on porte à 150°C.

L'analyse de ces mélanges réactionnels au cours du temps permet de tracer le graphe $\mathbf{n}_{\text{ester}} = \mathbf{f}(\mathbf{t})$ ci-contre

- 1- Ecrire l'équation de la réaction en utilisant les formules semi-développées.
- 2- a) Dresser un tableau d'évolution du système.
 - b) Tracer l'allure de la courbe représentant $n_{acide} = g(t)$.
 - c) Quels caractères de la réaction d'hydrolyse d'un ester mettent en évidence ces deux graphes ?

- 3. Déterminer le taux d'avancement du système pour $\mathbf{t} = \mathbf{28}$ min puis le taux d'avancement final $\boldsymbol{\tau}_f$ de la réaction.
 - 4. a) Exprimer la constante d'équilibre relative à la réaction d'hydrolyse de l'ester en fonction de $\tau_{\rm f}$.

- b) Calculer sa valeur.
- 5. On part maintenant d'un mélange renfermant initialement 1 mol d'ester, 2 mol d'eau, 2 mol d'acide et 1 mol d'alcool; déterminer:
 - a) **x**'_f le l'avancement final de la réaction.
 - b) La composition molaire du mélange à l'équilibre.

EXERCICE N°3:

Une réaction d'estérification peut être réalisée entre l'acide éthanoïque (CH₃ – CO₂H) et l'éthanol (CH₃–CH₂OH) en présence d'acide sulfurique. L'équation associée à la réaction modélisant cette estérification s'écrit :

$$CH_3 - CO_2H + CH_3 - CH_2OH$$
 $CH_3 - CO_2 - CH_2 - CH_3 + H_2O$

La constante d'équilibre K associée à cette estérification est K = 4.

Dans un bécher placé dans un bain d'eau glacée, on introduit un volume V_A d'acide éthanoïque, un volume V_B d'éthanol et quelques gouttes d'acide sulfurique concentré.

Données:

	masse molaire M (en g.mol ⁻¹)	masse volumique ρ (en g.mL ⁻¹)
acide éthanoïque	60	1,05
éthanol	46	0,79

- 1) a- Indiquer pourquoi il est nécessaire de placer initialement le bécher dans un bain d'eau glacée.
- **b-** Justifier succinctement l'intérêt d'ajouter de l'acide sulfurique sachant qu'il ne participe pas à la transformation chimique étudiée.
- 2) Le mélange initial {acide + alcool} est équimolaire: la quantité d'acide introduite est égale à 0,20 mol. En utilisant les données, calculer les volumes V_A d'acide éthanoïque et V_B d'éthanol introduits dans le bécher.
- 3) Déterminer alors l'avancement maximal x_{max} de la réaction dans ces conditions.
- **4)** Dans le cas d'une estérification qui serait réalisée à partir d'un mélange initial équimolaire de réactifs (0,20 mol d'éthanol et 0,20 mol d'acide éthanoïque).
- **a-** Au bout d'une certaine durée, le système chimique est en état d' « équilibre dynamique». Expliquer cette expression.
- **b-** Dresser le tableau d'avancement correspondant à cette transformation chimique.
- c- Écrire l'expression littérale de la constante d'équilibre K correspondante. Déterminer la valeur de l'avancement $x_{\text{éq}}$ à l'équilibre. Exprimer le taux d'avancement final τ_f de cette réaction puis le calculer.
- **d** Déterminer la composition du mélange final.
- 5) On réalise un nouveau mélange initial (0,50 mol d'éthanol et 0,20 mol d'acide éthanoïque).
- a- Calculer la valeur de l'avancement x'_{eq} à l'équilibre. En déduire le taux d'avancement final τ'_{f} .
- b- Conclure quant à l'influence des proportions initiales des réactifs sur le déplacement de l'équilibre.