

राष्ट्रीय प्रौद्योगिकी संस्थान पटना / NATIONAL INSTITUE OF TECHNOLOGY PATNA

संगणक विज्ञान एंव अभियांत्रिकी विभाग / DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING अशोक राजपथ, पटना-८००००५, बिहार / ASHOK RAJPATH, PATNA-800005, BIHAR

Phone No.: 0612-2372715, 2370419, 2370843, 2371929 Ext- 200, 202 Fax-0612-2670631 Website: www.nitp.ac.in

No:-	Date:
140.	Dutc.

MC470401 Deep Learning L-T-P-Cr: 3-0-2-4

Pre-requisites:

1. Basic knowledge of machine learning.

Objectives:

- 1. To impart knowledge on the need and basics of deep learning.
- 2. To make students proficient in applying deep learning techniques in various research areas of Computer Vision and Pattern Recognition.
- 3. To make students able to develop various deep learning based systems.

Course Outcomes – After completing this course, students will be able to understand:

SI.	Course Outcome (CO)	Mapping	to	
No		POs		
1	Concepts and techniques of deep neural network and	PO1, PO2		
	training algorithms of neural network			
2	Need, concepts, and learning algorithms of various	PO1, PO	2	
	associative memories like Hopfield network and			
	Autoencoder			
3	Need, concepts, and learning algorithms of stochastic		PO1,	
	machine like Boltzmann machine	PO2,PO3		
4	Need, concepts, and learning algorithms of radial basis	PO1,		
	function network	PO2,PO3		
5	Need, concepts, and learning algorithms of convolutional	PO1,	PO2,	
	neural network	PO3,	PO4,	
		PO5		
6	Need, concepts, and learning algorithms of recurrent	PO1,	PO2,	
	neural network	PO3,	PO4,	
		PO5		
7	Need and concepts of various attention mechanisms	PO1,	PO2,	
		PO3,	PO4,	
		PO5		

UNIT I: Neural Network Lectures: 10

Brief introduction to neural network. Error Cost Function, Mean-Square Error, Cross-Entropy. Linear vs Non-linear functions: Activation Function – Linear, Sigmoid, Softmax, Relu.

Optimization: Gradient Descent Algorithm, Momentum Based Gradient Descent Algorithm and Nesterov Accelerated Gradient Descent Algorithm.

UNIT II: Feedback Networks

Algorithm for Pattern Association/Reconstruction: Associative memory networks, Hetero Associative Memory neural networks; Auto Associative Memory Networks---Autoencoders: Undercomplete, Regularized; Bi-directional Associative memory networks.

Lectures: 11

Lectures: 08

Lectures: 09

Lectures: 04

Feedback Networks: Discrete Hopfield Net, Continuous Hopfield Net; Stochastic machine---Boltzmann machine; Radial Basis Function Networks (RBFN): Training algorithm for an RBFN with fixed centres.

UNIT III: Convolutional Neural Network

Architecture, Convolution Operation, Filters, Pooling Operation---Max pooling, Average pooling; Backpropagation algorithm in CNN, Class activation mapping and Global pooling, Dilated CNN.

UNIT IV: Recurrent Neural Network

Recurrent Neural Network: Basic concepts of RNN, Vanishing Gradient problem, Long Short Term Memory (LSTM)---Architecture, Bidirectional Long Short Term Memory (BLSTM)---Architecture, Gated Recurrent Unit (GRU)---Architecture, Backpropagation through Time algorithm, Attention Mechanism.

UNIT V: Attention Mechanism

Need of attention mechanism, Self-attention, Channel-attention, Multi-headed attention.

Reference Book:

- 1) Neural Network by Simon Haykin, Pearson Education/PHI
- 2) Deep Learning, Part II. Goodfellow, I., Bengio, Y., Courville, A., MIT Press, 2016.

References:

1) Learning deep architectures for AI. Bengio, Yoshua. Foundations and trends in Machine Learning 2.1 (2009): 1127.