A Level Biology

DNA - Mutation.

Name:

Retrieval Practice.

- 1. How are DNA & RNA best described?
- 2. List three key differences between DNA & RNA.
- 3. How is DNA copied?
- 4. What is the triplet code?
- 5. How many codons can be produced from the triplet code?
- 6. Which enzyme is responsible for transcription and where does transcription occur?
- 7. What is splicing?
- 8. Where does splicing occur?
- 9. What is an anticodon and where would it be found?
- 10. Compare mRNA & tRNA
- 11. How and where does translation occur?

Mutation

- → Understand the term gene mutation as illustrated by base deletions, insertions and substitutions.
- → Understand the effect of point mutations on amino acid sequences, as illustrated by sickle cell anaemia in humans.

RNA codon table

1st position	J	C	A	G	3rd position
U	Phe Phe Leu Leu	Ser Ser Ser Ser	Tyr Tyr stop stop	Cys Cys stop Trp	⊃∪∢G
С	Leu Leu Leu	Pro Pro Pro	is is n n HHGG	Arg Arg Arg	⊃∪∢G
Α	lle lle lle Met	Thr Thr Thr Thr	Asn Asn Lys Lys	Ser Ser Arg Arg	U C A G
G	Val Val Val	Ala Ala Ala	Asp Asp Glu Glu	Gly Gly Gly	U C A G

Amino Acids

Ala: Alanine
Arg: Arginine
Asn: Asparagine
Asp:Aspartic acid
Cys:Cysteine

Gln: Glutamine
Glu: Glutamic acid
Gly: Glycine
His: Histidine
Ile: Isoleucine

Leu: Leucine Lys: Lysine Met: Methionine Phe: Phenylalanine Pro: Proline

Ser: Serine Thr: Threonine Trp: Tryptophane Tyr: Tyrosisne Val: Valine

TAC	GTG	ACA	CGG	CAT	ATT
mRNA Sequence	•				
Polypeptide ami	no acid sequence	€.			
Consequence					

TAC	GTG	ACA	CGG	CAT	ATT
Mutated DNA Se	equence.				
TAC	GTA	ACA	CGG	CAT	ATT
mRNA Sequence	e				
Amino acid sequ	lence.				
Consequence					
<u> </u>					

Substitution type 2 - missense.

TAC	GTG	ACA	CGG	CAT	ATT
Nutated DNA Se	quence.				
TAC	GTT	ACA	CGG	CAT	ATT
nRNA Sequence	,				
Polypeptide amii	no acid sequence) .			
Consequence					

Substitution Type 3 - Non Sense mutation.

TAC	GTG	ACA	CGG	CAT	ATT			
DNA Sequence								
TAC	GTG	ACT	CGG	CAT	ATT			
mRNA Sequence								
Polypeptide amii	no acid sequence	Э.						
Consequence								

Deletion mutation (causing frameshift)

TAC	GTG	ACA	CGG	CAT	ATT
NA Sequence					
TAC	GTG	ACA	GGC	ATA	TTT
nRNA Sequence	e				
olypeptide ami	ino acid sequence).			
Consequence			1		

insertion mutation (causing frameshift)

TAC	GTG	AC	A	С	GG		CAT	ATT
DNA Sequence								
TAC	TGT	GAC	AC	G	GCA	\	TAT	TTT
mRNA Sequence	e							
Polypeptide am	ino acid sequer	nce.						
Consequence						·		

Sickle cell Anemia

Wild Type (sense) DNA

ATG	GTG	CAC	стс	ACT	ССТ	GAG	AAG	тст	GCC
Wild Type (antisense) DNA									
mRNA Se	mRNA Sequence								
Amino acid sequence									
Sickle cel	l mutation	(sense str	and)						
ATG	GTG	CAC	CTG	ACT	ССТ	GTG	AAG	тст	GCC
Sickle Cell (antisense Strand)									
	l (antisens	se Strand)							
	l (antisens	se Strand)							
mRNA Se		se Strand)							
mRNA Se		se Strand)							

Consequence

What causes mutations?

Examination Practice

	•		
r	٦	м	

(a) What name is used for the non-coding sections of a gene?

(1)

Figure 1 shows a DNA base sequence. It also shows the effect of two mutations on this base sequence. Figure 2 shows DNA triplets that code for different amino acids.

Figure 1

Original DNA base sequence	Α	Т	Т	G	G	С	G	Т	G	Т	С	Т
Amino acid sequence												
Mutation 1 DNA base sequence	Α	Т	Т	G	G	Α	G	Т	G	T	С	Т
Mutation 2 DNA base sequence	Α	T	T	G	G	U	U	T	G	T	С	Т

Figure 2

DNA triplets	Amino acid
GGT, GGC, GGA, GGG	Gly
GTT, GTA, GTG, GTC	Val
ATC, ATT, ATA	lle
TCC, TCT, TCA, TCG	Ser
CTC, CTT, CTA, CTG	Leu

(b) Complete Figure 1 to show the sequence of amino acids coded for by the original DNA base sequence.

(1)

- (c) Some gene mutations affect the amino acid sequence. Some mutations do not. Use the information from Figure 1 and Figure 2 to explain
- (i) whether mutation 1 affects the amino acid sequence

(ii)	how mutation 2 could lead to the formation of a non-functional enzyme.	
(d)	Gene mutations occur spontaneously.	(3)
(i)	During which part of the cell cycle are gene mutations most likely to occur?	
		(1)
(ii)	Suggest an explanation for your answer.	
		(1) (Total 9 marks)

Q2. Lysozyme is a	an enzyı	me cons	sisting o	of a sing	ıle poly _l	peptide	chain o	of 129 amino acids.
(a) What is the mini	mum nı	ımber o	f nucle	otide ba	ases ne	eded to	code fo	or this enzyme?
								(
(b) The diagram sho this enzyme.	ows the	sequen	ce of ba	ases in a	a sectio	n of the	mRNA	strand used to synthesise
G G	υcι	ט ט נ	c u	UAU	G G	U A G	i A U	A U
(i) Give the DNA secsection of mRNA.	quence	which v	vould b	e comp	lement	ary to tl	ne first f	our bases in this
								(
(ii) How many differ diagram?	ent type	es of tRI	NA mol	ecule w	ould at	tach to	the sect	tion of mRNA shown in the
	which r	night in	crease	the frec	quency :	at whic	h a muta	ation in DNA occurs.
1.								
2.								(;
_	alterati	on in th	e seque	ence of		•		on of mRNA. These yme. The diagram shows
Original amino acid sequence	Gly	Leu	Ser	Tyr	Gly	Arg	Tyr	
Original mRNA base sequence	GGU	CUU	UCU	UAU	GGU	AGA	UAU	
				1	1	1		1
Altered amino acid sequence	Gly	Leu	Tyr	Leu	Trp	Arg	Tyr	
Altered mRNA base sequence	GGU	CUU				AGA	UAU	

(i)	Use the mRNA codons provided in the table to complete the altered mRNA base sequence in
the	diagram.

Amino acid	mRNA codons which can be used
Arg	AGA
Gly	GGU
Leu	CUU or UUA
Ser	ucu
Тгр	UGG
Tyr	UAU or UAC

	_	١
	1	1
١.	4	,

in the DNA.			

(ii) Use the information provided to determine the precise nature of the two single base mutations

(3)

(Total 9 marks)

Q3.(a) A mutation can lead to the production of a non-functional enzyme. Explain how.

(6)

Q5.(a)	(i) Why is the g	enetic code described as	being universal?		
					(1)
	_	es four different DNA base using these four bases?	es. What is the maxii	mum number of	different DNA
					(1)
Transc	ription of a gene p	roduces pre-mRNA.			
(b) N	ame the process th	nat removes base sequend	ces from pre-mRNA	to form mRNA.	
					(1)
	_	ows part of a pre-mRNA m , as shown in the figure. Base sequence removed from pre-mRNA	nolecule. Geneticists Base sequence coding for amino acids		mutations that
	Exc	on Intron	V	Exon	
	single base sin	utation 2, igle base ostitution			
(i) M	utation 1 leads to t	he production of a non-fu	nctional protein.		
Explair	n why.				

What effect might mutation 2 have	on t	he p	orote	ein p	oroc	luce	ed?							
ain your answer.														
													(Tota	l 8 mai
henylketonuria is a disease caused I e shows part of the DNA base seque lence which leads to the production	nce	cod	ling	for l	PAH	l. It a	also		_			-		
DNA base sequence coding for		i i	ı I											
PAH														
•	С	Α	G	Т	Т	С	С	С	T	Α	С	G		

(ii) Explain how this mutation leads to the formation of non-functioning PAH.	
	()
PAH catalyses a reaction at the start of two enzyme-controlled pathways. The diagram shows these pathways.	
phenylalanine	
PAH	
tyrosine	
DOPA	
melanin dopamine	
(a dark pigment in skin) (a substance required for muscle coordination)	
(b) Use the information in the diagram to give two symptoms you might expect to be visible in a person who produces non-functioning PAH.	
1.	
2.	
	(;

central Asia. It is now found in many different populations across Asia. Suggest of this mutation may have occurred.	•
	12

M1. (a) Introns;	1	
(b) Ile Gly Val Ser;	1	
(c) (i) Has no effect / same amino acid (sequence) / same primary structure;		
Q Reject same amino acid formed or produced.	1	
Glycine named as same amino acid;	_	
It still codes for glycine = two marks.	1	
(ii) Leu replaces Val / change in amino acid (sequence) / primary structure;		
Change in hydrogen / ionic bonds which alters tertiary structure / active site; Q Different amino acid formed or produced negates first marking point.		
Substrate cannot bind / no longer complementary / no enzyme-substrate complexes form;		
Active site changed must be clear for third marking point but does not need reference to shape.	3	
	J	
(d) (i) Interphase / S / synthesis (phase);	1	
(ii) DNA / gene replication / synthesis occurs / longest stage;		
Allow 'genetic information' = DNA.		
Allow 'copied' or 'formed' = replication / synthesis	1	[9]
		(A)
M2. (a) 387;		
(1) (1) 0040	1	
(b) (i) CCAG;	1	
(ii) 5; Page 25		

(c) high energy radiation / X rays / ultraviolet light / gamma rays; high energy particles / alpha particles / beta particles; named chemical mutagens e.g. benzene / caffeine / pesticide / mustard gas / tobacco tar / free radicals; (two named examples of any of the above = 2 marks) length of time of exposure (to a mutagen); dosage (of mutagen);

2 max

(d) (i) UAC UUA UGG;

1

(ii) addition and deletion (of bases / nucleotides);
 thymine added;
 adenine deleted;
 (addition of thymine and deletion of adenine = 3 marks)
 (allow addition of adenine (RNA) and deletion of uracil (RNA)
 = 2 marks)

3

[9]

M3.(a) 1. Change / mutation in base / nucleotide sequence (of DNA / gene);

Ignore: references to changing base-pairing
Accept: affect for change, if in correct context

Accept: changes triplets / codons

2. Change in amino acid sequence / primary structure (of enzyme);

Accept: different amino acid(s) coded for

Q Reject: different amino acids produced / formed / made

3. Change in hydrogen / ionic / disulfide bonds;

Accept: references to sulfur bonds

Change in the <u>tertiary</u> structure / shape;

Neutral: alters 3D structure / 3D shape

- 5. Change in active site;
- 6. Substrate not complementary / cannot bind (to enzyme / active site) / no enzyme-substrate complexes form.

Accept: no E S complexes form

6

(b) 1. Non-SR strain falls more / SR strain falls less / up to 10(µg / cm-3);

Must include 10 but only required once in either MP1 or MP2

Ignore: units or absence of

This must be a comparative statement

- 2. Above 10(μg / cm⁻³), SR strain levels out / off <u>and</u> non-SR strain continues to decrease;
- 3. Greater difference between strains with increasing concentration of antibiotic.

This must be a comparative statement

2 max

(c) 1. Division stopped (of both strains by scientist);

Reject: references to mitosis stopping

2. SR strain still more resistant / fewer die / none die (at higher concentrations of antibiotic).

Accept: SR strain and non-SR strain would be similar if resistance is due to only stopping division

Need some comparison with non-SR

(d) 1. Make a competitive / non-competitive inhibitor;

Mark in pairs

either MP1 and MP2 OR MP3 and MP4

2. Competitive competes with / blocks active site / non-competitive inhibitor affects / changes active site;

Do not mix and match

OR

3. (Make a drug) that inhibits / denatures / destroys enzyme / stringent response;

Accept: drug that 'knocks out' / destroys enzyme

4. Give at the same time as / before an antibiotic.

2 max

- (e) (SR strain)
 - 1. Fewer free radicals (than non-SR);

Note: has to be comparative statement

2. Produces more catalase (than non-SR);

Accept converse statements for non-SR.

3. Catalase (might be) linked to production of fewer free radicals / breaking down / removing free radicals.

Accept: hydrolysis of radicals by catalase.

3 [15]

- M4.(a) 1. Reduction in ATP production by aerobic respiration;
 - 2. Less force generated because fewer actin and myosin interactions in muscle:
 - 3. Fatigue caused by lactate from anaerobic respiration.

3

- (b) Couple A,
 - 1. Mutation in mitochondrial DNA / DNA of mitochondrion affected;
 - 2. All children got affected mitochondria from mother;
 - 3. (Probably mutation) during formation of mother's ovary / eggs;

' '	4. 5. 6.	Mutation in nuclear gene / DNA in nucleus affected; Parents heterozygous; Expect 1 in 4 homozygous affected.	4 max	
(c)	1. 2. 3.	Change to tRNA leads to wrong amino acid being incorporated into protein; Tertiary structure (of protein) changed; Protein required for oxidative phosphorylation / the Krebs cycle, so less / no ATP made.	, 3	
(d)	1. 2. 3.	Mitochondria / aerobic respiration not producing much / any ATP; (With MD) increased use of ATP supplied by increase in anaerobic respiration; More lactate produced and leaves muscle by (facilitated) diffusion.	3	
(e)	1. 2.	Enough DNA using PCR; Compare DNA sequence with 'normal' DNA.	2	[15]
Accept plu Reject trip	don / ırals let <u>s</u> (n all organisms / DNA,) the same triplet codes for the same amino acid; / same three bases / nucleotides if both triplets and amino acids code for an amino acid se to producing amino acid	1	
	(ii)	64;	1	

Couple B,

(b) Splicing;
Ignore deletion references
Accept RNA splicing

1

(c) (i) 1. (Mutation) changes triplets / codons after that point / causes frame shift;

Accept changes splicing site

Ignore changes in sequence of nucleotides / bases

2. Changes amino acid sequence (after this) / codes for different amino acids (after this);

Accept changes primary structure

Reject changes amino acid formed / one amino acid changed

- 3. Affects hydrogen / ionic / sulfur bond (not peptide bond);
- 4. Changes tertiary structure of protein (so non-functional);

Neutral 3-D structure

3 max

(ii) 1. Intron non-coding (DNA) / only exons coding;

Context is the intron

Do not mix and match from alternatives

Neutral references to introns removed during splicing

1.and 2. Ignore ref. to code degenerate and get same / different amino acid in sequence

(So) not translated / no change in mRNA produced / no effect (on protein) / no effect on amino acid sequence;

Accept does not code for amino acids

OR

- 3. Prevents / changes splicing;
- 4. (So) faulty mRNA formed;

Accept exons not joined together / introns not removed

5. Get different amino acid sequence;

2 max

[8]

(b) (i) Loss of 3 bases / triplet = 2 marks;;

'Stop codon / code formed' = 1 mark max unless related to the last amino acid

Loss of base(s) = 1 mark;

eg triplet for last amino acid is changed to a stop codon / code = 2 marks

3 bases / triplet forms an intron = 2 marks

Accept: descriptions for 'intron' eg non-coding DNA

'Loss of codon' = 2 marks

2

(ii) 1. Change in tertiary structure / active site;

Neutral: change in 3D shape / structure

2. (So) faulty / non-functional protein / enzyme;

Accept: reference to examples of loss of function eg fewer E-S complexes formed

[5]

2

M7.(a) (i) 4;

1

- (ii) 1. Change in amino acid / (sequence of) amino acids / primary structure;
- 1. Reject = different amino acids are 'formed'
 - 2. Change in hydrogen / ionic / disulphide bonds alters tertiary structure / active site (of enzyme);
- 2. Alters 3D structure on its own is not enough for this marking point.
 - Substrate not complementary / cannot bind (to enzyme / active site) / no enzyme- substrate complexes form;

3

(b) 1. Lack of skin pigment / pale / light skin / albino;

2. Lack of coordination / muscles action affected;

2 max

(c) Founder effect / colonies split off / migration / interbreeding;

Allow description of interbreeding e.g. reproduction between individuals from different populations

1

[7]