
SMARTDAMP: Simple, Model-based Automatic Tuning with Robust Damping for PID

Position Control of Electric Motors

Ben Caunt

2

Abstract

In robotic systems Proportional Integral Derivative (PID) control [1] is an algorithm used

to move systems powered by electric motors to a desired position. The process for

implementing this algorithm involves tuning the three gains: the Proportional, Integral,

and Derivative terms. Correct tuning of these gains is necessary for the system to reach

the desired position with the desired response characteristics [2]. The Ziegler-Nichols

(ZN) procedure is one of the most common methods for tuning PID Controllers. ZN is a

heuristic approach which requires the engineer to increase the proportional gain until

the system reaches a steady oscillation. While easy to accomplish, ZN tuning can

damage the system during this oscillation if hardstops or current limits are exceeded. In

addition, ZN often produces aggressive responses [3] that may not be effective in

day-to-day operations but may also degrade the lifespan of this system. This paper

introduces the derivation for the SMARTDAMP (“Simple, Model-based Automatic

Tuning with Robust Damping") algorithm, which provides a method to derive optimal

PID coefficients safely. We used an android-based, four-motor holonomic mobile robot

to compare the ZN procedure vs. SMARTDAMP. The result of this process was that we

collected sufficient evidence to conclude that the proposed SMARTDAMP algorithm

outperforms ZN for motor-based systems in terms of disturbance rejection and

trajectory tracking error.

3

1. Introduction

Electric Motors are used in systems all across the world. While technological advances are made

in many connecting engineering disciplines, the main idea for controlling motor positions has

stayed roughly the same for decades. The procedure begins with a sensor, such as an encoder, to

measure the system’s position, then using a microcontroller implementation of a PID Controller

to compute the motor controller's output. This algorithm is then updated hundreds if not

thousands of times per second to ensure the system arrives at the desired output state. The Da

Vinci Surgical System [4] and other life-saving medical equipment use PID Control to translate

the surgeon's inputs into precise robotic motion. In computer-numerical-control (CNC), the

same PID Control approach remains dominant in controlling systems such as mills and lathes to

manufacture parts within a tolerance of less than inches [5]. The core principles± 0. 0001

behind PID control are now nearly 100 years old [6], with the critical difference being that most

PID controllers today are implemented in software rather than with analog circuits. The most

critical factor in the success of these systems is how well their PID coefficients are tuned.

2. Background

In robotics, we often want to move our system not only to a desired position but also to regulate

our velocity and acceleration to improve consistency and reduce long-term wear and tear on the

system. A common approach is using a trapezoidal motion profile [7] to generate the trajectory

reference between the initial and desired positions while respecting the previously mentioned

constraints.

4

Figure 1: Trapezoidal Motion Profile Trajectory traveling 300 inches with a max velocity of 50

in/s and max acceleration of 30 𝑖𝑛/𝑠2

In specific applications, it is possible to use motion profiles without the use of feedback control.

Feedforward control instead uses a model to approximate the optimal control input. While

feedforward is often less robust to external and unmodeled disturbances such as mechanical

failures, it can be immune to sensor noise or outright sensor failures [8].

One such Feedforward model is the simple motor feedforward model [9]:

(1.1)𝑢 = 𝐾
𝑣
�̇� + 𝐾

𝑎
�̈�

Where is the power sent to the motor, is the desired velocity of the system, is the desired𝑢 �̇� �̈�

acceleration of the system, and are tuned constants. Manually tuning this model to𝐾
𝑣
 𝑎𝑛𝑑 𝐾

𝑎

acceptable precision is relatively straightforward. During operation of the robot, the reference

velocity and accelerations are substituted into and the feedforward equation 1.1. Increasing�̇� �̈�

will eliminate phase-lag.𝐾
𝑎

5

Figure 2: Feedforward Tuning Procedure ran our Mecanum Drive Robot, kV = 0.0132 and kA =

0.003.

Note: Oftentimes systems will implement a friction feedforward term (1.1.1). This works well

and you should use it. For the purposes of this work we ignore this term due to transfer functions

requiring a linear differential equation.

(1.1.1)𝑢 = 𝐾
𝑣
�̇� + 𝐾

𝑎
�̈� + 𝑘𝑆𝑡𝑎𝑡𝑖𝑐 · 𝑠𝑖𝑔𝑛(�̇�)

Why Feedback?

As we can see, the feedforward accurately tracks the velocity reference from the motion profile

to see how close it gets to the end position.

6

Figure 3: Position of Feedforward Only Trajectory Tracking Performance

Since the feedforward-only approach cannot correct disturbances such as friction or debris in the

testing area, it cannot track the reference trajectory accurately.

The solution to this problem is to add a feedback controller like PID into the loop. A PID

controller forces the error to be much smaller as it actively compensates for the disturbances by

changing the motor output based on the system’s estimated state. The problem now is with the

optimal tuning of the PID Controller.

Ziegler-Nichols PID Tuning

While it is typical for manual or heuristic tuning methods such as the Ziegler-Nichols

procedure to be used, the Ziegler-Nichols procedure is often ineffective at producing optimal

gains and conducting the tuning procedure requires increasing the proportional gain until the

system is marginally stable in a continual oscillation. Doing this poses the risk of making the

system go unstable, which for some systems can cause damage and be expensive to repair.

Figure 4: Kp at Critical Stability value where the robot reaches a marginally stable oscillation.

7

System Modeling

The method with the best performance guarantees, is model-based PID tuning [10]. A

popular modeling technique in control theory is that of transfer function modeling. Instead of

time domain techniques such as differential equations, transfer functions are in terms of the

complex variable that represents the set of frequencies a given system can respond to.𝑠

To model our system, we can start with our general equation of the system’s input in

equation 1.1 and then re-arange in terms of acceleration to obtain a differential equation of our

system. Using this two-parameter feedforard is useful as it allows us to approximately model our

complex motor based system through a purely experimental process by tuning the feedforward

model as in Figure 2.

Transfer Function Model

Given the feedforward from equation 1.1: , one can re-arrange the equation in𝑢 = 𝐾
𝑣
�̇� + 𝐾

𝑎
�̈�

terms of acceleration:

(1.2)�̈� = 1
𝐾

𝑎
𝑢 −

𝐾
𝑣

𝐾
𝑎

�̇�

Now we can take the Laplace transform of this differential equation. Simply put, each state

variable becomes the complex variable to the power of the order of the derivative of the state𝑠

variable.

(1.3)𝑠2 = 1
𝐾

𝑎
−

𝐾
𝑣

𝐾
𝑎

𝑠

8

The input cancels (), and the acceleration and velocity states became their associated𝑠0 = 1

derivatives.

Finally, we need to re-arrange into a rational expression of input over output:

(1.4)𝐺(𝑠) =
1/𝑘

𝑎

𝑠2+
𝐾

𝑣

𝐾
𝑎

𝑠

Position vs. Input Transfer Function

Transfer functions are great for system modeling as they give crucial information about a

system’s motion characteristics and stability.

To find these characteristics, we need to find the characteristic roots or poles of the system. The

value of poles tells us if our system is stable or not.

Pole Locations and Stability impact

Pole Location Is Stable? Will Oscillate?

Real, Negative Yes No

Complex, Negative Yes Yes

Real, 0 Marginally Stable No

Complex, 0 Marginally Stable Yes

Real, Positive No No

Complex, Positive No Yes

An important concept to grasp is that all poles of a system need to be negative for the system to

be stable. This is because solving a linear dynamic system takes the form:

(1.5)𝑓(𝑡) =
𝑖=1

𝑛

∑ 𝑒
λ

𝑖
𝑡

9

Where is a given pole in our system, we can visualize if our system is stable with equation 1.5.λ
𝑖

If all of our poles are negative, then f(t) will decay to 0, but if just one pole is non-negative, then

convergence will not occur, and thus the system is unstable.

The poles of a transfer function system are found by finding when the denominator of our

transfer function goes to zero. For equation 1.4, this is when . We can use the𝑠2 +
𝐾

𝑣

𝐾
𝑎

𝑠 = 0

quadratic formula to solve for the pole locations. Using this, we know we have a pole at 0 and at

. The presence of a zeroed pole tells us that no matter the motor's constants, in order to−
𝐾

𝑣

𝐾
𝑎

make this system stable, we must use feedback control.

When designing our feedback controller, we aim to ensure that all of our poles lie in the left

plane of the imaginary axis. Of the stable pole locations, there are three main types of responses:

Under-damped, Over-damped, and Critically-damped responses.

Figure 4: Over-Damped Response Figure 5: Under-Damped Response

w

Figure 6: Critically-Damped Response

Overdamped responses occur when a system’s poles are both real and negative. Underdamped

responses occur when the system’s poles are complex and negative. A critically damped response

10

occurs whenever both poles are equal. The transfer function of a PID controller is

[12]. For our purposes, our system already has a pole at the origin, so𝐶(𝑠) = 𝐾
𝑝

+
𝐾

𝑖

𝑠 + 𝐾
𝑑
𝑠

we opt to use the PD controller only (equation 1.6). Our goal now is to tune𝐶(𝑠) = 𝐾
𝑝

+ 𝐾
𝑑
𝑠

these two coefficients to place our system’s closed-loop poles at the same location. First, we

need to solve the closed loop poles. The general equation for a closed-loop feedback controller

is . G(s) is our open-loop system, and C(s) is our feedback controller. Substituting in𝐺(𝑠)𝐶(𝑠)
1+𝐺(𝑠)𝐶(𝑠)

equation 1.4 and equation 1.6, we can find our closed loop transfer function is

(1.7)𝐶𝐿(𝑠) =
𝐾

𝑝
+𝐾

𝑑
𝑠

𝐾
𝑝
+𝐾

𝑑
𝑠+𝐾

𝑣
𝑠+𝐾

𝑎
𝑠2

Our characteristic polynomial, is then, therefore, .𝐾
𝑝

+ 𝐾
𝑑
𝑠 + 𝐾

𝑣
𝑠 + 𝐾

𝑎
𝑠2

We can then plug the characteristic polynomial into the quadratic formula to find each pole:

λ
1

=
𝐾

𝑑
+𝐾

𝑣
− 𝐾

𝑑
2+2𝐾

𝑑
𝐾

𝑣
+𝐾

𝑣
2−4𝐾

𝑎
𝐾

𝑝

2𝐾
𝑎

λ
2

=
𝐾

𝑑
+𝐾

𝑣
+ 𝐾

𝑑
2+2𝐾

𝑑
𝐾

𝑣
+𝐾

𝑣
2−4𝐾

𝑎
𝐾

𝑝

2𝐾
𝑎

We know that for a system to be critically damped, λ
1

= λ
2

𝐾
𝑑
+𝐾

𝑣
− 𝐾

𝑑
2+2𝐾

𝑑
𝐾

𝑣
+𝐾

𝑣
2−4𝐾

𝑎
𝐾

𝑝

2𝐾
𝑎

−
𝐾

𝑑
+𝐾

𝑣
+ 𝐾

𝑑
2+2𝐾

𝑑
𝐾

𝑣
+𝐾

𝑣
2−4𝐾

𝑎
𝐾

𝑝

2𝐾
𝑎

= 0

(1.8)

Which when one solves for yields:𝐾
𝑑

(1.9)𝐾
𝑑
 = 2 𝐾

𝑎
𝐾

𝑝
− 𝐾

𝑣

11

When 𝐾
𝑝

≥
𝐾

𝑣
2

4𝐾
𝑎

Thus, given our two motor constants, Kv and Ka as well as with any arbitrary choice of Kp

which exceeds the bounds, we can use equation 1.9 to guarantee our closed loop system will

have a critically damped response. This takes away the pressure of tuning the PID for stability

and instead allows the engineercto tune for performance.

The SMARTDAMP Procedure

Now that all equations have been defined, we can outline the procedure one must follow to

utilize the SMARTDAMP algorithm. First, they use the feedforward model to follow a ramping

trajectory, such as the motion profile in Figure 1. They then will fit the Kv, and Ka coefficients

by hand or through an automatic tuning process. This process of tuning the Kv and Ka constants

is much more intuitive and has less risk of instability compared to immediately jumping into PID

tuning. Finally, the operator can use equation 1.9 to tune the derivative term given any choice of

Kp, and they can be confident that the system will remain stable no matter the value they choose.

Kp can be adjusted manually until the response is as fast as desired, without worrying about the

potential for overshoot. This approach is critical because it combines the precision and

guarantees of model-based gain tuning with the low barrier of entry associated with heuristic

tuning procedures such as ZN.

Results

12

Using a holonomic mobile robot, we tested the trajectory tracking and disturbance rejection

qualities of our proposed SMARTDAMP approach compared to the Ziegler-Nichols

“no-overshoot” and “PD” settings. We had the robot follow a straight-line, motion-profiled

trajectory of 60 inches in length. For each tuning configuration, we tested one run undisturbed

and a second with a 10-inch disturbance to see how the controller responded.

Figure 7: Trajectory tracking of Ziegler-Nichols “No-Overshoot” vs. SMARTDAMP

Figure 8: Disturbance Rejection of Ziegler-Nichols “No-Overshoot” vs. SMARTDAMP.

From these results, we can observe that for ideal conditions, the settling time of SMARTDAMP

will be much faster than that of the Ziegler-Nichols tuning procedure. Just as critical, whenever

13

external disturbances such as collisions with other robots occur, we can be confident that

SMARTDAMP will quickly and smoothly correct the system and reject any disturbances.

Conclusion

In this work, we demonstrated how we could reduce the complexity of PID tuning for the end

user by having them first perform a manual system identification of the plant. Then by using the

Laplace transform and the generalized feedback equation, we derive optimal, critically damped

PID gains for the system in question. We reveal that one can find the critically damped

derivative gain as (when). We were able to mathematically𝐾
𝑑
 = 2 𝐾

𝑎
𝐾

𝑝
− 𝐾

𝑣
𝐾

𝑝
≥

𝐾
𝑣

2

4𝐾
𝑎

defend that not only is SMARTDAMP guaranteed to be stable due to forcing a controller with

negative pole locations, but also guarantees extremely little/no overshoot due to calculating the

gain to make the pole locations identical. This property of SMARTDAMP allows the control

engineer to tune the system and purely be concerned with how fast the system’s response is

without needing to be burdened by concerns of closed-loop stability. Using a Holonomic

mecanum drive robot, we tested SMARTDAMP against the Ziegler-Nichols tuning procedure to

assess trajectory tracking performance and disturbance rejection. While the Ziegler-Nichols tests

also did successfully track the reference trajectory and reject the disturbance, the responses were

much slower, less stable, and less predictable than SMARTDAMP.

References

1. Kiam Heong Ang, G. Chong and Yun Li, "PID control system analysis, design,

and technology," in IEEE Transactions on Control Systems Technology, vol. 13,

no. 4, pp. 559-576, July 2005, doi: 10.1109/TCST.2005.847331.

14

2. “Driver PID Settings.” Thorlabs, Inc. - Your Source for Fiber Optics, Laser Diodes,

Optical Instrumentation and Polarization Measurement & Control,

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=9013#:~:text=To%20tun

e%20your%20PID%20controller,to%20roughly%20half%20this%20value.

3. Trammell, Larry. “Ziegler-Nichols Tuning Rules for PID.” Ziegler-Nichols Tuning Rules

for PID, https://www.mstarlabs.com/control/znrule.html.

4. Li, Bing, et al. “Study on the Low Velocity Stability of a Prostate Seed Implantation

Robot’s Rotatory Joint.” Electronics, vol. 9, no. 2, 2020, p. 284.

https://doi.org/10.3390/electronics9020284.

5. Fu C-B, Tian A-H, Li Y-C, Yau H-T. Active controller design for precision computerized

numerical control machine tool systems. Journal of Low Frequency Noise, Vibration and

Active Control. 2019;38(3-4):1149-1159. doi:10.1177/1461348418797239

6. Bennett, S. (1984). Nicholas Minorsky and the automatic steering of ships. IEEE Control

Systems Magazine, 4, 10-15.

7. Trapezoidal motion profiles in WPILIB. FIRST Robotics Competition Documentation.

(n.d.). Retrieved January 4, 2023, from

https://docs.wpilib.org/en/stable/docs/software/advanced-controls/controllers/trapezoidal-

profiles.html

8. Douglas, B. (2018, September 25). What is Feedforward Control? | Control Systems in

practice. YouTube. Retrieved January 6, 2023, from

https://www.youtube.com/watch?v=FW_ay7K4jPE

15

9. Veness, T. (n.d.). Controls Engineering in FRC - Tavsys.net. Retrieved January 6, 2023,

from https://file.tavsys.net/control/controls-engineering-in-frc.pdf

10. Douglas, B. (2018, July 24). Manual and automatic PID tuning methods | understanding

PID control, part 6. YouTube. Retrieved January 6, 2023, from

https://www.youtube.com/watch?v=qj8vTO1eIHo

11. HoustonMathPrep. (2013, October 8). Using Laplace transforms to solve differential

equations. YouTube. Retrieved January 6, 2023, from

https://www.youtube.com/watch?v=FBl6XSTaS7k

12. Wikimedia Foundation. (2023, January 3). Pid Controller. Wikipedia. Retrieved January

6, 2023, from https://en.wikipedia.org/wiki/PID_controller

13. Intro to control - 10.2 closed-loop transfer function. YouTube. (2014, October 31).

Retrieved January 6, 2023, from https://youtu.be/GBv5iiKA6gw

