

Antrea BGP Proposal

CRD Design

Draft 1 (Deprecated)

The struct of the CRD:

●​ Name: BGPPolicy
●​ Spec:

○​ nodeSelector, required, which is to set the target K8s Nodes.
○​ localASN, which is the local ASN used by BGP.
○​ advertisements , required, which has different selectors to select Pod

CIDR, Service IPs or Egress IPs, which will be advertised to BGP
peers.

○​ bgpPeers, required, which is the list of BGP peers. Further refinement
is possible, given the similarity to the BGP field in the Custom
Resource Definition (CRD) for Cillium, as outlined in this link.

Option 1:

For a Kubernetes Node, multiple BGPPolicies with distinct localASN values can be
concurrently applied and take effect. However, if multiple BGPPolicies sharing the
same localASN are applied to a K8s Node, only the initial one will be effective, while
the others will be queued. If the currently effective BGPPolicy is removed, the first
one in the queue will then take effect.

Option 2:

Only one BGPPolicy can take effect on a Kubernetes Node, and others serve as
alternatives, regardless of the AS number. After an effective BGPPolicy applied to a
Node is deleted, an alternative BGPPolicy will become effective.

We need more discussion about the selectors in advertisements. Currently, we
use the following selectors:

●​ ClusterIPs: use serviceSelector and namespaceSelector to select Services,
then the ClusterIPs of the selected Services will be advertised.

●​ ExternalIPs: use serviceSelector and namespaceSelector to select Services,
then the external IPs of the selected Services will be advertised.

https://docs.cilium.io/en/stable/network/bgp-control-plane/

●​ LoadBalancerIPs: use serviceSelector and namespaceSelector to select
Services, then the LoadBalancer ingress IPs of the selected Services will be
advertised.

●​ PodIPs: boolean, which decides whether to advertise local Pod CIDR.
●​ EgressIPs: boolean, which decides whether to advertise local Egress IPs.

TODO: use selector or boolean for Service and Egress IP selection? For Service
IPs, I was thinking of using selector since a custom wants to advertise Service IPs in
a certain namespace, according to this link. Another advantage of using selector is
that this could provide a flexible way to select Service IPs. For a boolean, it either
selects all Service IPs or none.

We thought of these selectors and decided not to use them:

●​ podSelector + namespaceSelector to select Pod IPs
●​ the Service CIDR
●​ serviceSelector + namespaceSelector to select Services, then advertise the

Service IPs, like ClusterIP, ExternalIP, and LoadBalancer ingress IPs of them.
●​ List of namespaced Services.
●​ the local Pod CIDR.
●​ ipPoolSelector to select external IP pools used by Egress, then advertise the

IPs in these pools
●​ List of Egress IPs

This is an example of the CR.

apiVersion: "antrea.io/v1alpha1"​
kind: BGPPolicy​
metadata:​
 name: test-bgp-policy​
spec: ​
 # Required, select the target K8s Nodes​
 nodeSelector: ​
 matchLabels:​
 bgp-policy: web​
 # Required, local ASN used by BGP. Two CRs with the same value of the field

cannot be applied to a Node at​
 # the same time. CRs with different values of the field can be applied to a

Node at the same time.​
 localASN: 60001​
 # Required, to select routes to advertise to BGP peers.​
 advertisements:​
 # Optional, select clusterIPs.​
 clusterIPs:​
 ​ serviceSelector:​
 matchLabels:​
 app: web​
 namespaceSelector:​

https://github.com/antrea-io/antrea/issues/5948#issuecomment-1921008338

 matchLabels:​
 kubernetes.io/metadata.name: prod​
 # Optional, select externalIPs.​
 externalIPs:​
 ​ serviceSelector:​
 matchLabels:​
 app: web​
 namespaceSelector:​
 matchLabels:​
 kubernetes.io/metadata.name: prod​
 # Optional, select loadBalancerIPs.​
 loadBalancerIPs:​
 ​ serviceSelector:​
 matchLabels:​
 app: web​
 namespaceSelector:​
 matchLabels:​
 kubernetes.io/metadata.name: prod ​
 # Optional, if setting field to true, local NodeIPAM Pod CIDR will be

advertised. When AntreaIPAM is enabled, IPs allocated by Antrea IPAM will be

also advertised.​
 podIPs: false​
 # Optional, select Egress IPs.

 egressIPs: false​
 #egressIPs:​
 # matchLabels:​
 # app: web

​
 # Required, list of BGP peers.​
 bgpPeers:​
 - address: "192.168.1.254"​
 ​ port: 179​
 asn: 60254​
 authSecret: secretname​
 multipleHopTTL: 10​
 connectRetryTime: 120​
 holdTime: 90​
 keepAliveTime: 30​
 gracefulRestart:​
 ​enabled: true​
 restartTimeSeconds: 120​
 - address: "192.168.1.253"​
 ​ port: 179​
 asn: 60253​
 authSecret: secretname​
 multipleHopTTL: 10​
 connectRetryTime: 120​
 holdTime: 90​
 keepAliveTime: 30​
 gracefulRestart:​
 ​enabled: true​

 restartTimeSeconds: 120

Draft 2

Name
BGPPolicy

Description
●​ With nodeSelector, apply a BGPPolicy to the select K8s Nodes.
●​ If multiple BGPPolicies are applied to a Node, only the first one will be effective and

in Active status, and others serve as alternatives.
●​ localASN of every item in bgpConfigurations should be unique.
●​ Multiple bgpConfigurations are necessary for advertising various sets of IPs to

different groups of BGP peers.

Prons

●​ Easy to advertise different sets of IPs to different BGP peers.
●​ Only selectors and flags are needed to decide whether to advertise selected IPs to a

group of BGP peers.
●​ The implementation becomes more application-oriented as it utilizes Service and

Namespace selectors. There is no need to employ certain BGP filters that might
require defining CIDRs or IPs for exclusion from a group of BGP peers.

●​ It might be simpler to implement the controller of the CRD.
Cons

●​ More resources are needed since multiple bgpConfigurations are needed in
some cases.

●​ Address-oriented filtering is not supported when there is a need to exclude one or
more specific IPs from a group of BGP peers.

Metadata

Field Description Schema

name string

Spec

Field Description Schema Default

nodeSelector Select the Nodes to
which the BGPPlicy
will be applied.

selector

configurations The list of
BGPConfigurations.
Every
BGPConfiguration is
for a BGP process.

list of
BGPConfiguration

BGPConfiguration

Field Description Schema Default

localASN The local AS
number used by
BGP.

integer

bindAddresses The addresses
where to listen for
BGP connections. If
this is empty, listen
to all IPv4 and IPv6
addresses.

list of string empty list

listenPort The listening port
used by BGP.

integer

routerID RouterID used by
BGP. It is only
needed when
deploying an IPv6
single stack.

string of an IPv4
address

empty string

advertisements Select the prefixes
to advertise to BGP
peers.

Advertisements or
List of
Advertisement

peers The list of BGP
peers.

list of BGPPeer

Advertisements

Field Description Schema Default

clusterIPs Select Services and
their ClusterIPs will
be advertised.

Service selector and
Namespace selector

nil

externaIPs Select Services and
their external IPs will
be advertised.

Service selector and
Namespace selector

nil

loadbalancerIPs Select Services and Service selector and nil

their LoadBalancer
ingress IPs will be
advertised.

Namespace selector

podIPs Whether to
advertise local Pod
CIDR

boolean false

egressIPs Whether to
advertise local
Egress IPs

boolean false

Optimized Advertisement
Thanks for ’s suggestion. antonin.bas@gmail.com

Field Description Schema Default

services Select Services and
their LoadBalancer
ingress IPs will be
advertised.

list of
ServiceAdvertiseme
nt

empty list

podIPs Whether to
advertise local Pod
CIDR

boolean false

egressIPs Whether to
advertise local
Egress IPs

boolean false

ServiceAdvertisement

serviceSelector Select Services with
selector.

selector nil

namespaceSelector Select Services with
Namespace
selector.

selector nil

clusterIPs Whether to
advertise clusterIPs.

boolean false

externaIPs Whether to
advertise
externalIPs.

boolean false

loadbalancerIPs Whether to
advertise
loadbalancerIPs.

boolean false

mailto:antonin.bas@gmail.com

BGPPeer

Field Description Schema Default

address IPv4 or IPv6
address of BGP
peer

IPv4 or IPv6 string

port Port of BGP peer integer 179

asn The As number of
BGP peer

integer

gracefulRestartTime Restart time for
BGP graceful
restart. If it is set to
0, graceful restart of
BGP will be
disabled.

integer 120

authSecretRef BGP password to
the peer.

string (name of a
K8s Secret)

nil (no password)

BGPPeert

Field Description Schema Default

address IPv4 or IPv6
address of BGP
peer

IPv4 or IPv6 string

port Port of BGP peer integer 179

asn The As number of
BGP peer

integer

gracefulRestartTime Restart time for
BGP graceful
restart. If it is set to
0, graceful restart of
BGP will be
disabled.

integer 120

authSecretRef BGP password to
the peer.

string (name of a
K8s Secret)

nil (no password)

Sample YAML

apiVersion: "antrea.io/v1alpha1"​

kind: BGPPolicy​
metadata:​
 name: test-bgp-policy​
spec:​
 nodeSelector: ​
 matchLabels:​
 kubernetes.io/hostname: k8s-node-control-plane​
 bgpConfigurations:​
 - localASN: 60001​
 advertisements:​
 externalIPs:​
 serviceSelector:​
 matchLabels:​
 app: web​
 namespaceSelector:​
 matchLabels:​
 kubernetes.io/metadata.name: prod​
 egressIPs: true​
 bgpPeers:​
 - address: "192.168.1.254"​
 port: 179​
 asn: 60254​
 authSecretRef: secretname​
 - localASN: 60002​
 advertisements:​
 clusterIPs:​
 serviceSelector:​
 matchLabels:​
 app: web​
 namespaceSelector:​
 matchLabels:​
 kubernetes.io/metadata.name: test​
 podIPs: true​
 bgpPeers:​
 - address: "192.168.1.253"​
 port: 179​
 asn: 60253

Sample YAML with Optimize Advertisements

apiVersion: "antrea.io/v1alpha1"​
kind: BGPPolicy​
metadata:​
 name: test-bgp-policy​
spec:​
 nodeSelector: ​

 matchLabels:​
 kubernetes.io/hostname: k8s-node-control-plane​
 bgpConfigurations:​
 - localASN: 60001​
 advertisements:​
 serviceIPs:​
 - serviceSelector:​
 matchLabels:​
 zone: a​
 namespaceSelector:​
 matchLabels:​
 kubernetes.io/metadata.name: prod​
 externalIP: true​
 loadBalancerIP: true​
 - serviceSelector:​
 matchLabels:​
 zone: b​
 namespaceSelector:​
 matchLabels:​
 kubernetes.io/metadata.name: prod​
 clusterIP: true​
 egressIPs: true​
 podIPs: true​
 bgpPeers:​
 - address: "192.168.1.254"​
 port: 179​
 asn: 60254​
 authSecretRef: secretname​
 - localASN: 60002​
 advertisements:​
 serviceIPs:​
 - serviceSelector:​
 matchLabels:​
 zone: a​
 namespaceSelector:​
 matchLabels:​
 kubernetes.io/metadata.name: test​
 clusterIP: true​
 podIPs: true​
 bgpPeers:​
 - address: "192.168.1.253"​
 port: 179​
 asn: 60253

Draft 3

Name
BGPPolicy

Description
●​ With nodeSelector, apply a BGPPolicy to the select K8s Nodes.
●​ If multiple BGPPolicies are applied to a Node, only the first one will be effective and

in Active status, and others serve as alternatives.
●​ localASN is not required. The default value is 65000.
●​ BGPFilters are needed to avoid advertising some sets of IPs to a BGP peer. A

BGPFilter can be used by multiple bgpPeer.
Prons

●​ Less resources are needed since only a single BGP process is needed.
●​ The implementation has more fine-grained filters, using BGPFilters, to advertise

different sets of IPs to different groups of BGP peers.
Cons

●​ It is a bit complex to use when using the BGPFilter.
●​ The implementation might become more complex as an additional CRD BGPFilter is

required.

Metadata

Field Description Schema

name string

Spec

Field Description Schema Default

localASN The local AS
number used by
BGP.

integer 65000

bindAddresses The addresses
where to listen for
BGP connections. If
this is empty, listen
to all IPv4 and IPv6
addresses.

list of string empty list

listenPort The listening port
used by BGP.

integer 179

nodeSelector Select the Nodes to
which the BGPPlicy
will be applied.

selector

routerID RouterID used by
BGP. It is only
needed when
deploying an IPv6
single stack.

string of a IPv4
address

empty string

advertisements Select the prefixes
to advertise to BGP
peers.

Advertisements

peers The list of BGP
peers.

list of BGPPeer

Advertisements

Field Description Schema Default

clusterIPs Select Services and
their ClusterIPs will
be advertised.

Service selector and
Namespace selector

nil

externaIPs Select Services and
their external IPs will
be advertised.

Service selector and
Namespace selector

nil

loadbalancerIPs Select Services and
their LoadBalancer
ingress IPs will be
advertised.

Service selector and
Namespace selector

nil

podIPs Whether to
advertise local Pod
CIDR

boolean false

egressIPs Whether to
advertise local
Egress IPs

boolean false

BGPPeer

Field Description Schema Default

address IPv4 or IPv6
address of BGP
peer

IPv4 or IPv6 string

port Port of BGP peer integer 179

asn The As number of integer

BGP peer

gracefulRestartTime Restart time for
BGP graceful
restart. If it is set to
0, graceful restart of
BGP will be
disabled.

integer 120

authSecretRef BGP password to
the peer.

string (name of a
K8s Secret)

nil (no password)

filters A list of BGPFilters
applied to the peer.
These filters are
used for preventing
some prefixes to be
advertised to the
peer.

list of BGPFilter empty list

BGPFilter
TODO

Sample YAML

​​apiVersion: "antrea.io/v1alpha1"​
kind: BGPPolicy​
metadata:​
 name: test-bgp-policy​
spec:​
 nodeSelector: ​
 matchLabels:​
 kubernetes.io/hostname: k8s-node-control-plane​
 localASN: 65000​
 advertisements:​
 externalIPs:​
 serviceSelector:​
 matchLabels:​
 app: web​
 namespaceSelector:​
 matchLabels:​
 kubernetes.io/metadata.name: prod​
 clusterIPs:​
 serviceSelector:​
 matchLabels:​
 app: web​
 namespaceSelector:​

 matchLabels:​
 kubernetes.io/metadata.name: test​
 podIPs: true​
 egressIPs: true​
 bgpPeers:​
 - address: "192.168.1.254"​
 port: 179​
 asn: 60254​
 authSecretRef: secretname​
 filters:​
 ​ - reject-pod-ips​
 ​ - reject-cluster-ips​
 - address: "192.168.1.253"​
 port: 179​
 asn: 60253​
 filters:​
 ​ - reject-egress-ips​
 ​ - reject-external-ips

Data Path

We utilize goBGP as our data path, leveraging its maturity as a native Go framework.
Notably, it is employed by projects such as Cillium, Kube-router, and others.

In comparison to other BGP implementations, while goBGP may not be the optimal
choice, it proves to be adequate for advertising Kubernetes Service IPs and Pod IPs.
In the figure below, the prefix routes scale is 10K, with peer numbers of 10, 30, 50,
75, and 100. We could see that the convergence time of goBGP is almost the same
with others when there are 10 peers. Our implementation exclusively requires eBGP,
and a full mesh of iBGP is unnecessary. Typically, each K8s Node might establish
BGP connections with at most two peers. See the benchmark result in this link.

https://github.com/osrg/gobgp
https://medium.com/the-elegant-network/comparing-open-source-bgp-stacks-1aea0c681423

Despite the relatively high resource cost of goBGP, we can mitigate this by disabling
certain features to reduce resource consumption.

To facilitate a potential switch to another BGP implementation in the future, it is
essential to maintain loose coupling between the controller implementation of
BGPPolicy and the BGP interface.

TODO: support more BGP data paths in the future, maybe FRR or Bird.

Requirements

Ensure reachability to CIDRs from outside AS through the default route on all K8s
Nodes. Like the following:

If the Kubernetes network is structured like the following, we may not currently plan
to provide support. While the issue can be addressed by installing routes learned
from BGP peers, this approach may introduce additional effort and complicate the
overall design.

Service IPs can be advertised by multiple Nodes, leading to the installation of
multiple equal-cost routes (Equal-cost multi-path, ECMP). However, it is essential to
maintain session granularity in load balancing for BGP peers. This implies that

packets from a connection should consistently be forwarded to the same next hop
(K8s Node). This is crucial because the initial packet of a connection might undergo
SNAT on a specific K8s Node. If subsequent packets are forwarded to a different
K8s Node, it could result in a connection broken.

Demo Cases

Host Delta -> Service with backend Pod2
Provided that only Node2 is selected by a BGPPolicy.
Service IPs are advertised by Node2, enabling host Delta to access the Services IPs
via Node2. Since the Endpoint is just on Node2, SNAT is not needed.

Host Delta -> Service with backend Pod1 (encap)
Provided that only Node2 is selected by a BGPPolicy.
Service IPs are advertised by Node2, enabling host Delta to access the Services IPs
via Node2. Since the Endpoint is on Node1, SNAT is needed.
If a Service with externalTrafficPolicy Local and no local Endpoints, don’t
advertise the Service IPs of the Service. If the Service’s externalTrafficPolicy is
Local and has no local Endpoints on Node2, then the Service IPs will not be
advertised on Node2.

Host Delta -> Service with backend Pod1 (noEncap)
Provided that only Node2 is selected by a BGPPolicy.
Service IPs are advertised by Node2, enabling host Delta to access the Services IPs
via Node2. Since the Endpoint is on Node1, SNAT is needed.

Host Delta -> Service with backend Pod2
Provided that both Node1 and Node2 are selected by a BGPPolicy.
Service IPs are advertised by both Node1 and Node2, enabling host Delta to access
the Services IPs through ECMP. Since the Endpoint is on Node2, when the first
packet of a connection is forwarded to Node2, SNAT is not needed; when the first
packet of a connection is forwarded to Node1, SNAT is needed. Note that, the
subsequent packets of a connection should always be forwarded the same Node to
avoid connection disruption. This might need some configurations in remote routers,
maybe called something like “session sticky”.

Host Delta -> Service with backend Pod2, iTP/eTP == Local
Provided that both Node1 and Node2 are selected by a BGPPolicy.
If the Service’s externalTrafficPolicy is Local and has no local Endpoints on Node1,
then the Service IPs will not be advertised on Node1. The Service IPs are only
advertised on Node2.

Host Delta -> Pod2
Provided that only Node2 is selected by a BGPPolicy.
Pod CIDR of Node2 is advertised by Node2, enabling host Delta to access the Pod
IP via Node2. Like Node2, if Node1 is selected by a BGPPolicy, Pod CIDR of Node1
could be advertised by Node1.

Host Delta -> Pod1

Pod2 -> Egress -> Host Delta
Provided that only Node2 is selected by a BGPPolicy.
Egress IP on Node2 is advertised by Node2, enabling the reply packets of connection
initiated from Pod2 and destined to host Delta can be forwarded back to Node2.

Pod1 -> Egress -> Host Delta
Provided that only Node2 is selected by a BGPPolicy.
Egress IP on Node2 is advertised by Node2, enabling the reply packets of connection
initiated from Pod1 and destined to host Delta can be forwarded back to Node2.

Work Break Down
-​ CRD design
-​ code
-​ e2e test
-​ antctl

	Antrea BGP Proposal
	CRD Design
	Draft 1 (Deprecated)
	Draft 2
	Name
	Description
	Metadata
	Spec
	BGPConfiguration
	Advertisements
	Optimized Advertisement
	ServiceAdvertisement

	BGPPeer

	Sample YAML
	Sample YAML with Optimize Advertisements

	Draft 3
	Name
	Description
	Metadata
	Spec
	Advertisements
	BGPPeer
	BGPFilter

	Sample YAML

	Data Path
	Requirements
	Demo Cases
	Host Delta -> Service with backend Pod2
	Host Delta -> Service with backend Pod1 (encap)
	Host Delta -> Service with backend Pod1 (noEncap)
	
	Host Delta -> Service with backend Pod2
	Host Delta -> Service with backend Pod2, iTP/eTP == Local
	Host Delta -> Pod2
	Host Delta -> Pod1
	
	Pod2 -> Egress -> Host Delta
	Pod1 -> Egress -> Host Delta

	Work Break Down

