Lesson 5.1.2 Assignment

5-26. Write the equation of the inverse for each of the following functions. Homework Help Solutions

5-26. Write the equation of the inverse for each of the following functions. Homework Help \(\)

a.
$$f(x) = 3x - 8$$

b.
$$f(x)=rac{1}{2}x+6$$

c.
$$f(x)=rac{x+6}{2}$$

Please show your work to get full credits.

a.

b.

C.

5-28.

Solve the following systems of equations. In other words, find values of a and b that make each system true. Be sure to show your work or explain your thinking clearly. Homework Help $\stackrel{\triangle}{=}$

5-28. Solve the following systems of equations. In other words, find values of *a* and *b* that make each system true. Be sure to show your work or explain your thinking clearly. Homework Help

a.
$$3=a\cdot b^0$$
 $75=a\cdot b^2$

b.
$$18 = a \cdot b^2$$
 $54 = a \cdot b^3$

α.

b.

- 5-29. Lacey and Richens each have a personal function machine. Lacey's machine, L(x), squares the input and then subtracts 1. Richens' function machine, R(x), adds 2 to the input and then multiplies the result by 3. Homework Help
 - a. Write equations that represent L(x) and R(x).
 - b. Lacey and Richens decide to connect their two machines so that Lacey's output becomes Richens' input. If 3 is the initial input, what is the final output?
 - c. What if the order of the machines is changed? Would it change the output? Justify your answer.

5-32.Graph y = 5(x-2) and its inverse on the same set of axes. Label the graph and the inverse function with their equations. Homework Help \bigcirc

5-33. Look at the graph of a function and its inverse, shown at right. If h(x) is a function and $h^{-1}(x)$ is its inverse, can you tell which is which? Why or why not? Homework Help $\stackrel{\bullet}{\longrightarrow}$

<u>Homework Help </u> [≤]

5-34. The function f(x) is represented in the graph at right. Draw a graph of its inverse function. Be sure to state the domain and range for both f(x) and $f^{-1}(x)$. What is the relationship between the domain and range of the original function and the domain and range of the inverse? $\underline{5-34\ HW}$ \underline{eTool} (Desmos) $\underline{Homework\ Help}$

