

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

THEORY COURSE FILE CONTENTS

Check list Course Outcomes Attainment

S. No.	Contents	Available (Y/N/NA)	Date of Submission	Signature of HOD
1.	Authenticated Syllabus Copy	Y	05.04.2021	
2.	Individual Time Table	Y		
3.	Students' Name List (Approved Copy)	Y		
4.	Course Plan, PO, PSO, COs, CO-PO Mapping, COA Plan, Session Plan and Periodic Monitoring	Y		
5.	Previous Year End Semester Question Papers	Y		
6.	Question Bank (All Units - Part A, Part B & C)	Y		
7.	Dissemination of Syllabus and Course Plan to Students	Y	-	
8.	Lecture Notes - Unit I, & III	Y	-	
9.	Sample Documents and Evaluation Sheet for Internal Assessment – Tutorials / Assignments / Class Test / Open Book Test / Quiz / Project / Seminar / Role Play if any (Before Mid Term)			
10.	Mid Term Examination		-	
	 A. Question Paper / Any Other Assessment Tools Used B. Sample Answer Scripts (Best, Average, Poor) if required C. Evaluation Sheet 			
	D. Slow Learners List and Remedial Measures			
11.	Lecture Notes – Unit II & IV			
12.	Sample Documents and Evaluation Sheet for Internal Assessment – Tutorials / Assignments / Class Test / Open Book Test / Quiz / Project / Seminar / Role Play if any (After Mid Term)			
13.	Course End Survey (Indirect Assessment) & Consolidation			
14.	 End Term Examination A. Question Paper & Answer Key B. Sample Answer Scripts (Best, Average, Poor) if required C. Evaluation Sheet 			

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

	D. Slow Learners List and Remedial Measures.		
15.	Content Beyond the Syllabus (Proof)		
16.	Innovative Teaching Tools Used for TLP		
17.	Details of Visiting Faculty Session / Industry Expert / Guest Lecture / Seminar / Field Visit / Webinars / Flipped Class Room / Blended Learning / Online Resources etc.		
18.	Consolidated Mark Statement		
19.	CO Attainment (Mid Term + Internal Assessment + End Term)		
20.	Gap Analysis & Remedial Measures		
21.	CO - PO Attainment]	
22.	Class Record (Faculty Logbook)		

Signature of HOD/ Dean	Signature of Faculty
Date:	Date:

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

MTH11502	Engineering Mathematics II L		T	P	С
Version 1.0	Contact Hours - 60	3	1	0	4
Pre-requisites/Exposure 12 th level Mathematics & Engineering Mathematics I					
Co-requisites					

Syllabus Copy

Course Objectives:

- 1. To help the student to understand the basic concepts of matrix theory with its uses in engineering science.
- 2. To give emphasis about concepts of Eigen value and Eigen vector, vector space and linear transformation and enable students to apply these topics for analyzing engineering problems.
- 3. To help the student to understand the use of vector calculus in engineering.
- 4. To give the students a perspective to learn about functions of complex variables, pole, and residues and their importance in advanced study of engineering science.
- **5.** To enable students to acquire the knowledge of different transformation techniques and their applications in engineering science.

Course Content

Unit- I [18L]

Linear Algebra: Elementary row and column operations on a matrix, Rank, echelon form, normal form, Inverse of a matrix using elementary operations, solution of system of algebraic equation, consistency, Caley-Hamillton theorem, eigenvalues and eigenvectors, Symmetric and skew-symmetric matrices, orthogonal matrices, complex matrices, Hermitian and skew-Hermitian matrices, algebraic and geometric multiplicity, diagonalization, vector spaces, linear dependence of vectors, basis, linear transformations.

Unit- II [14L]

Vector Calculus: Ordinary Integrals of Vectors, Multiple integrals, Jacobian, Line, surface and volume integrals of Vector fields, Gauss' divergence theorem, Green's and Stokes Theorems and their applications.

Complex Variables: Limit, continuity, differentiability and analyticity of functions, Cauchy-Riemann equations, line integrals in complex plane, Cauchy's integral theorem, independence of path, existence of indefinite integral, Cauchy's integral formula, derivatives of analytic functions, Taylor's series, Laurent's series, zeros and singularities, Residue theorem, evaluation of real integrals.

Unit- III [10L]

Fourier Series: Periodic functions, Definition of Fourier series, Euler's formulae, Dirichlet conditions, Change of interval, Even and odd functions, half range Fourier Sine & Cosine series.

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

Unit-IV [18L]

Introduction to Transform Calculus: Introduction to Laplace transform and its properties (without proof), Inverse Laplace transform, Definition of Fourier integrals, Fourier Sine & Cosine integrals, complex form of Fourier integral, Fourier sine & cosine transforms, inverse Fourier transform, introduction to Z- Transform and its properties, Inverse Z- Transform, Inverse Z-transform by partial fraction and residue methods.

Reference Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley and Sons
- 2. B.V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill
- 3. David C. Lay, Linear algebra and its application, (Latest edition), Pearson publication, New Delhi
- 4. B. S. Grewal, Higher Engineering Mathematics, Khanna Publications
- 5. C B Gupta, S R Singh, and Mukesh Kumar, Engineering Mathematics, Mc Graw Hill Publication
- 6. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, Narosa Publishing House

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

Faculty Individual Time Table

	<u>Faculty Individual Time Table</u>							
	ADAMAS UNIVERSITY, KOLKATA							
	SCHOOL OF Engineering and Technology (SOET)							
	·		All DEP	ARTMENT				
			Program	me: B.Tecl	1			
Course Code & Course: MTH11502 & Engineering Mathematics II Faculty Coordinator: Dr. Avik Pradhan (AP) & Dr. Nav Kumar Mahato (NKM)								
Day & Time	09.30 - 10.25	10.30 - 11.25	11.30 - 12.25	12.30 - 13.30	13.30 - 14.25	14.30 - 15.25	15.30 - 16.25	16.30 - 17.25
Monday	EM II (NKM)							
Tuesday	-			LU				
Wednesday	-	<u>EM II</u> (AP)		NC				
Thursday	-			Н		EM II (AP)		-
Friday	-		EM II (NKM)					

Signature of HOD Signature of Class Coordinator

Date: Date: 05.04.2021

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

Students Name List

Registration Number	Roll Number	Name of the Student
AU/2020/0005268	UG/02/BTBIOME/2020/006	RIYA PAUL
AU/2020/0005270	UG/02/BTBIOME/2020/007	HRITIKA ADHIKARY
AU/2020/0004488	UG/02/BTBIOME/2020/001	SOUMYADIP SANTRA
AU/2020/0005262	UG/02/BTBIOME/2020/005	MOYURI SEN
AU/2020/0005518	UG/02/BTBIOME/2020/009	ANWESA SARKAR
AU/2020/0004474	UG/02/BTCSE/2020/014	ABHISHEK THAKUR
AU/2020/0004475	UG/02/BTCSE/2020/015	SUBHENDU ROY
AU/2020/0004476	UG/02/BTCSE/2020/016	RHYTHM SEN
AU/2020/0004477	UG/02/BTCSE/2020/017	ASHISH KUMAR SINGH
AU/2020/0004480	UG/02/BTCSE/2020/019	SAGAR GHOSH
AU/2020/0004491	UG/02/BTCSE/2020/021	SWAPNODIP DAS
AU/2020/0004506	UG/02/BTCSE/2020/023	SUBRATA HAZRA
AU/2020/0004584	UG/02/BTCSE/2020/043	ATANU CHOWDHURY
AU/2020/0004586	UG/02/BTCSE/2020/044	SUBHADEEP KAR
AU/2020/0004591	UG/02/BTCSE/2020/045	PRIYESH CHANDA
AU/2020/0004473	UG/02/BTCSE/2020/013	VISHESH MOHANTY
AU/2020/0004512	UG/02/BTCSE/2020/024	ADITYA KUMAR
AU/2020/0005525	UG/02/BTCSE/2020/050	JIT CHATTERJEE
AU/2020/0004532	UG/02/BTCSE/2020/030	PRATHAMA SARKAR
AU/2020/0004537	UG/02/BTCSE/2020/031	BRINTA DEB
AU/2020/0004516	UG/02/BTCSE/2020/025	ANUSHKA KHATUA
AU/2020/0004490	UG/02/BTCSE/2020/020	DEEPTANU SAHA
AU/2020/0004579	UG/02/BTCSE/2020/040	SOUMIK DAS
AU/2020/0004571	UG/02/BTCSE/2020/037	ARPAN MAITY
AU/2020/0004576	UG/02/BTCSE/2020/038	ANIMESH DUTTA
AU/2020/0004577	UG/02/BTCSE/2020/039	ARITRA BISWAS
AU/2020/0004531	UG/02/BTCSE/2020/029	ROHAN SUTRADHAR
AU/2020/0005466	UG/02/BTCSE/2020/048	PRAGATI KEDIA
A T L / 2 0 2 0 / 0 2 2 4 5 4 4	UG/02/BTCSEAIML/2020/00	DROM CHRI
AU/2020/0004544	5 UG/02/BTCSEAIML/2020/00	DRON GUIN
AU/2020/0004559	7	DEBRUP DEY
113/2020/0001007	UG/02/BTCSEAIML/2020/01	
AU/2020/0004581	4	SAYANIK SUTRADHAR

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

	UG/02/BTCSEAIML/2020/00	
AU/2020/0004518	1	SURYA CHAKRABORTY
	UG/02/BTCSEAIML/2020/00	
AU/2020/0004519	2	RISHAV GHOSH
	UG/02/BTCSEAIML/2020/01	
AU/2020/0004567	0	SRIJITA SAHA
	UG/02/BTCSEAIML/2020/00	
AU/2020/0004538	4	PRITOM SAHA
	UG/02/BTCSEAIML/2020/01	
AU/2020/0004574	2	MD SAHID ALAM
	UG/02/BTCSEAIML/2020/00	
AU/2020/0004528	3	BISWAJIT CHAKRABORTY
AU/2020/0005551	UG/02/BTCSECSF/2020/007	MD DAWOOD KHAN
AU/2020/0004558	UG/02/BTCSECSF/2020/005	NILANJANA ROY
AU/2020/0004554	UG/02/BTCSECSF/2020/004	AYUSH KUMAR SINGH
AU/2020/0004527	UG/02/BTCSECSF/2020/002	MAYANK PAREEK
AU/2020/0004508	UG/02/BTCSECSF/2020/001	SHIBSANKAR SAW
AU/2020/0004487	UG/02/BTECE/2020/003	RISHAV BARDHAN
AU/2020/0004489	UG/02/BTME/2020/003	SOUHARDYA SAHA

Signature of HOD/Dean Signature of Class Coordinator

Date: Date: 05.04.2021

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

COURSE PLAN

Target	60% (marks)
Level-1	50% (population)
Level-2	60% (population)
Level-3	70% (population)

1. Method of Evaluation

UG
Internal Assessment (30%) (Quizzes/Tests, Assignments & Seminars etc.)
Mid Semester Examination (20%)
End Semester Examination (50%)

2. Passing Criteria

Scale	UG
Out of 10 Point Scale	CGPA – "5.00" Min. Individual Course Grade – "C" Passing Minimum – 35

3. Pedagogy

- Direct Instruction
- Kinesthetic Learning
- Flipped Classroom
- Differentiated Instruction

- Expeditionary Learning
- Inquiry Based Learning
- Game Based Learning
- Personalized Learning

4. Topics introduced for the first time in the program through this course

5. References:

Text Books	Web Resources	Journals	Reference Books
-	-	-	6

Signature of HOD/Dean Signature of Faculty

Date: 05.04.2021

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

GUIDELINES TO STUDY THE SUBJECT

Instructions to Students:

- 1. Go through the 'Syllabus' in the LMS in order to find out the Reading List.
- 2. Get your schedule and try to pace your studies as close to the timeline as possible.
- 3. Get your on-line lecture notes (Content, videos) at <u>Lecture Notes</u> section. These are our lecture notes. Make sure you use them during this course.
- 4. check your LMS regularly
- 5. go through study material
- 6. check mails and announcements on blackboard
- 7. keep updated with the posts, assignments and examinations which shall be conducted on the blackboard
- 8. Be regular, so that you do not suffer in any way
- 9. Cell Phones and other Electronic Communication Devices: Cell phones and other electronic communication devices (such as Blackberries/Laptops) are not permitted in classes during Tests or the Mid/Final Examination. Such devices MUST be turned off in the class room.
- 10. **E-Mail and online learning tool:** Each student in the class should have an e-mail id and a pass word to access the LMS system regularly. Regularly, important information Date of conducting class tests, guest lectures, via online learning tool. The best way to arrange meetings with us or ask specific questions is by email and prior appointment. All the assignments preferably should be uploaded on online learning tool. Various research papers/reference material will be mailed/uploaded on online learning platform time to time.
- 11. **Attendance:** Students are required to have minimum attendance of 75% in each subject. Students with less than said percentage shall NOT be allowed to appear in the end semester examination.

This much should be enough to get you organized and on your way to having a great semester! If you need us for anything, send your feedback through e-mail avik.pradhan@adamasuniversity.ac.in Please use an appropriate subject line to indicate your message details.

There will no doubt be many more activities in the coming weeks. So, to keep up to date with all the latest developments, please keep visiting this website regularly.

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

RELATED OUTCOMES

1. The expected outcomes of the Program are:

PO1	Engineering Knowledge
PO2	Problem analysis
PO3	Design/development of solutions
PO4	Conduct investigations of complex problems
PO5	Modern tool usage
PO6	The engineer and society
PO7	Environment and sustainability
PO8	Ethics
PO9	Individual and team work
PO1	Communication
0	Communication
PO1	Project management and finance
1	110ject management and imanee
PO1	Life-long Learning
2	Life-long Learning

2. The expected outcomes of the Course are: (minimum 4 and maximum 6)

CO1	Apply the knowledge of linear algebra for solving related engineering problems
CO2	Build the knowledge of vector calculus and apply it for solving related problems
CO3	Develop the concept of complex variable and its application
CO4	Outline the Fourier series representation of a function
CO5	Make use of appropriate transformation technique for solving differential equation or difference equation

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

3. Co-Relationship Matrix

Indicate the relationships by 1- Slight (Low) 2- Moderate (Medium) 3-Substantial (High)

Program Outcomes Course Outcomes	P0 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	P01 1	PO1 2
CO1	1	3	3	1	2	1	1	-	-	1	1	2
CO2	3	3	-	-	-	-	-	-	-	-	-	-
соз	-	3	-	-	2	-	-	-	-	-	-	-
CO4	3	-	3	-	-	-	-	-	-	-	-	-
CO5	3	-	3	-	-	-	-	-	-	-	-	2
Average	3	3	3	1	2	-	-	-	-	-	-	2

4. Course Outcomes Assessment Plan (COA):

Course	Internal As (30 Ma		Mid Term	End Term	Total	
Outcomes	Before Mid Term	After Mid Term	Exam (20 Marks)	Exam (50 Marks)	(100 Marks)	
CO1	5	2	10	8	25	
CO2	NA	2	NA	8	10	
CO3	NA	2	NA	13	15	
CO4	NA	7	NA	13	20	
CO5	5	7	10	8	30	
Total	10	20	20	50	100	

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

^{*} Internal Assessment – Tools Used: Assignment and Class Test.

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

OVERVIEW OF COURSE PLAN OF COURSE COVERAGE

Course Activities:

S.			Planned			Actual		
No	Descriptio n	From	То	No. of Sessio n	From	то	No. of Sessio n	Remark s
1.	Linear Algebra	05.04.202	23.06.202	18				
2.	Vector Calculus & Complex Variables	24.06.202 1	30.07.202	14				
3.	Fourier Series	03.05.202	11.06.202 1	10				
4.	Introductio n to Transform Calculus	05.04.202 1	30.04.202 1	08				
5.	Introductio n to Transform Calculus	14.06.202 1	16.07.202 1	10				

Total No. of Instructional periods available for the course: 60 Sessions

Signature of HOD/Dean	Signature of Faculty
Date:	Date: 05.04.2021

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

SESSION PLAN

<u>UNIT-I</u>

	Session Plan					Actual Delivery					
Lect	Date	Topics to be Covered	CO Mapped	Lect	Date	Topics Covered	CO Achieved				
1	07.04.21	Definition of Matrix with examples. Operation on Matrices.	CO1								
2	08.04.21	Matrix transposition, symmetric and Skew symmetric matrix and their properties.	CO1								
3	21.04.21	Orthogonal Matrices and their properties.	CO1								
4	22.04.21	Introduction to complex matrices, Hermitian matrix and their properties.	CO1								
5	28.04.21	Skew Hermitian matrices, Unitary matrices and their properties.	CO1								
6	29.04.21	Elementary row and column operations on a matrix with examples.	CO1								
7	05.05.21	Rank of a matrix and examples.	CO1								
8	06.05.21	Finding inverse of a matrix by elementary row operations.	CO1								

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0

C: 4

9	12.05.21	Determinant of a matrix with examples.	CO1		
10	26.05.21	Solution of system of algebraic equation, consistency.	CO1		
11	27.05.21	Introducing eigenvalues and eigen vectors of a square matrix.	CO1		
12	02.06.21	Cayley-Hamilton theorem and finding inverse of a square matrix.	CO1		
13	03.06.21	Algebraic and geometric multiplicity of an eigen value and diagonalization of a square matrix.	CO1		
14	09.06.21	Vector spaces with examples. Linear dependence and independence.	CO1		
15	10.06.21	Basis and dimension of a vector space with examples.	CO1		
16	16.06.21	Linear transformation between two vector spaces, null space and rank of a linear transformation.	CO1		
17	17.06.21	Properties of linear transformations.	CO1		
18	23.06.21	Verification of rank nullity theorem.	CO1		

Remarks:	Signature of Facult
Acmarks.	Signature of raculty

Date:

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

SESSION PLAN

<u>UNIT-II</u>

		Session Plan				Actual Delivery	
Lect	Date	Topics to be Covered	CO Mapped	Lect	Date	Topics Covered	CO Achieved
1	24.06.21	Ordinary Integrals of Vectors, Multiple integrals.	CO2				
2	30.06.21	Jacobian, Line, surface integrals.	CO2				
3	01.07.21	Volume integrals of Vector fields, Gauss' divergence theorem with examples.	CO2				
4	07.07.21	Introduction of Green's theorem with examples.	CO2				
5	08.07.21	Introduction of Stokes theorem with examples.	CO2				
6	14.07.21	Introduction to complex functions and limits and analyticity of complex valued functions.	CO3				
7	15.07.21	Introductions to Cauchy-Riemann equations with examples.	CO3				
8	22.07.21	Introduction to line integrals and Cauchy's theorem.	CO3				
9	28.07.21	Cauchy's integral formula with some examples.	CO3				

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato **Course Code: MTH11502**

: Engineering Mathematics II 7. Course L: 3 8. Program : B.Tech T: 1 9. Target :60% P: 0 C: 4

10	29.07.21	Introduction to Taylor's series of complex valued functions.	CO3		
11		Introduction to Laurent series of complex valued functions and introduction to pole.	CO3		
12		Introduction to singularities of a complex valued function.	CO3		
13		Introduction to Cauchy's Residue theorem, evaluation of real integrals.	CO3		
14		Some problems related to Cauchy's Residue theorem.	CO3		

Remarks:	Signature of Faculty
Kemarks.	Signature of racturty

Date:

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

SESSION PLAN

UNIT-III

		Session Plan		Actual Delivery					
Lect	Date	Topics to be Covered	CO Mapped	Lect	Date	Topics Covered	CO Achieved		
1	03-05-202 1	Introduction to periodic functions with examples.	CO4						
2	07-05-202 1	Introduction to sine and cosine functions with the integrals.	CO4						
3	10-05-202 1	Even and odd functions with examples and introduction to Fourier series.	CO4						
4	14-05-202 1	Computation of Fourier coefficients with examples.	CO4						
5	24-05-202 1	Discussion of Euler's formula.	CO4						
6	28-05-202 1	Discussion of Dirichlet conditions on the convergence of Fourier series.	CO4						
7	31-05-202 1	Discussion of change of intervals of the function and related Fourier series.	CO4						
8	04-06-202 1	Introduction to Half range Fourier sine series with examples.	CO4						

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

9	07-06-202 1	Introduction to Half range Fourier cosine series with examples.	CO4		
10	11-06-202 1	Discussion of problems related to Fourier series.	CO4		

Remarks: Signature of Faculty

Date:

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

SESSION PLAN

<u>UNIT-IV</u>

Session Plan				Actual Delivery			
Lect	Date	Topics to be Covered	CO Mapped	Lect	Date	Topics Covered	CO Achieved
1	05-04-202 1	Discussion on piecewise continuous function and example of step function.	CO5				
2	09-04-202 1	Function of exponential order with examples and introduction to Laplace transform.	CO5				
3	13-04-202 1	Discussion of the existence of Laplace transform of a function.	CO5				
4	16-04-202 1	Evaluation of Laplace transform of some standard functions.	CO5				
5	19-04-202 1	Discussion of properties of Laplace transforms.	CO5				
6	23-04-202 1	Discussion of Laplace function of Dirac Delta function and Heaviside function.	CO5				
7	26-04-202 1	Introduction of Inverse Laplace transform.	CO5				

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

8	30-04-202 1	Application of Laplace transform with some examples.	CO5		
9	14-06-202 1	Definition of Fourier integrals and Fourier sine integrals with some examples.	CO5		
10	18-06-202 1	Fourier cosine integrals with some examples.	CO5		
11	21-06-202 1	Complex form of Fourier integral.	CO5		
12	25-06-202 1	Fourier sine transforms with some examples.	CO5		
13	28-06-202 1	Fourier cosine transforms with some examples.	CO5		
14	02-07-202 1	Discussion of inverse Fourier transform with some examples.	CO5		
15	05-07-202 1	Introduction to Z- Transform and its properties.	CO5		
16	09-07-202 1	Inverse Z- Transform with some examples.	CO5		
17	12-07-202 1	Inverse Z- transform by partial fraction and residue methods.	CO5		

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

18	16-07-202 1	Some problems discussion on inverse Z- transform.	CO5		

Remarks: Signature of Faculty

Date:

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

PERIODIC MONITORING

Actual date of completion and remarks, if any

Components		From	То	From	То
Duration (Me	Duration (Mention from and to				
I	Dates)				
Percentage o	f Syllabus covered				
Lectures	Planned				
Lectures	Taken				
Tutorials	Planned				
Tutoriais	Taken				
T / O /	Planned				
Test/Quizzes/	Taken				
Mid Semester/ End Semester	CO's Addressed				
End Semester	CO's Achieved				
	Planned				
A	Taken				
Assignments	CO's Addressed				
	CO's Achieved				
Signature of Faculty					
Head of the Department					
OBE Coordinator					

Signature of HOD/ Dean	Signature of Faculty
Date	Date

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

PERIODIC MONITORING

Attainment of the Course (Learning) Outcomes:

Components	Attainment level	Action Plan	Remarks
	CO1:		
	CO2:		
Assignment	CO3:		
	CO4:		
	CO5:		
	CO1:		
Ouiz/Tost	CO2:		
Quiz/Test etc.	CO3:		
ett.	CO4:		
	CO5:		
	CO1:		
Mid	CO2:		
Semester	CO3:		
Semester	CO4:		
	CO5:		
	CO1:		
End	CO2:		
Semester	CO3:		
Semester	CO4:		
	CO5:		
	CO1:		
	CO2:		
Any Other	CO3:		
	CO4:		
	CO5:		

Signature of HOD/ Dean

Signature of Faculty

Date Date

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

Previous Year Question Papers - Set 1

ADAMAS UNIVERSITY SCHOOL OF ENGINEERING AND TECHNOLOGY

END-SEMESTER EXAMINATION: JULY 2020

Name of the Program: B. Tech Semester: II

Stream: CSE/ECE/EE/ME/CE/Biotech

PAPER TITLE: Engineering Mathematics-II PAPER CODE:

SMA41102

Maximum Marks: 40 Time duration: 3

hours

Total No of questions: 08 Total No of Pages:

02

Instruction for the Candidate:

- At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Paper Name & Code, Date of Exam.
- **2.** All parts of a Question should be answered consecutively. Each Answer should start from a fresh page.
- 3. Assumptions made if any, should be stated clearly at the beginning of your answer.

Answer all the Groups

Group A

Answer all the questions of the following

 $5 \times 1 = 5$

- **1.** a) Calculate the inverse z-transform of the function $F(z) = \frac{1}{z-2}$.
 - **b)** Find the polar form of -1 + i.
 - c) What is the Laplace transform of $f(t) = t^2 e^{-at}$?
 - **d)** Write down the Fourier series representation for an odd function f(x) in the interval $-\pi \le x \le \pi$.
 - **e)** If $A = (0\ 2\ 0\ 4)$, Write A as a sum of a symmetric and skew symmetric matrices.

GROUP -B

(Short Answer Type Questions)

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7.	Course	: Engineering Mathematics II	L: 3
8.	Program	: B.Tech	T: 1
9.	Target	: 60%	P: 0
			C: 4

2. Verify Cayley-Hamilton theorem for $A = (0\ 0\ 1\ 3\ 1\ 0\ - 2\ 1\ 4)$.

$$f(x) = \begin{cases} 1 & \text{for } 0 \le x \le \pi \\ 0 & \text{for } x > \pi \text{ as a Fourier sine integral and hence evaluate} \end{cases}$$

 $\int_0^\infty \frac{1 - \cos \pi \lambda}{\lambda} \sin \lambda x \ d\lambda$

Express

3.

4. Define Harmonic function. Prove that $H(x, y) = e^{-y} \sin x$ is a harmonic function. [2+3]

5. Find the inverse Z-transform of $F(z) = \frac{(3z^2-z)}{(z-2)(z-3)(z-4)}$, using partial fraction method.

GROUP -C (Long Answer Type Questions)

Answer any two of the following

 $2 \times 10 = 20$

6. (i) Determine the analytic function f(z) = u + iv, if $u = e^{x}(x \cos y - y \sin \sin y)$.

(ii) Evaluate the line integral $\int_{i}^{2-i} (3xy + iy^2) dz$ along the line x + y = 1 [5+5]

7. (i) Evaluate the integration using Residue theorem $\int_{c} \frac{dz}{(z-1)(z-2)(z-3)}$ where $c: |z| = \frac{5}{2}$

(ii) Compute the Laplace transform of the following function $f(t) = \frac{e^{-at} - cosbt}{t}$ [5+5]

8. (i) Find Fourier cosine and Fourier sine transform of the following function: [6+4]

$$f(x) = \{x, 0 < x < a 0, otherwise, a is constant\}$$

(ii) Construct the Fourier cosine series expansion of the function $f(x) = \{1, 0 \le x < 1 - 1, 1 < x < 20, otherwise$

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

: Engineering Mathematics II 7. Course L: 3 : B.Tech 8. Program T: 1 P: 0 9. Target :60% C: 4

Previous Year Question Papers - Set 2

ADAMAS UNIVERSITY SCHOOL OF ENGINEERING AND TECHNOLOGY

END-SEMESTER EXAMINATION: JULY 2020

Name of the Program: B. Tech Semester: II

Stream: CSE/ECE/EE/ME/CE/Biotech

PAPER TITLE: Engineering Mathematics-II PAPER CODE:

SMA41102

Maximum Marks: 40 Time duration: 3

hours

Total No of questions: 08 Total No of Pages:

Instruction for the Candidate:

- 4. At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Paper Name & Code, Date of
- 5. All parts of a Question should be answered consecutively. Each Answer should start from a fresh
- **6.** Assumptions made if any, should be stated clearly at the beginning of your answer.

Answer all the Groups

Group A

Answer all the questions of the following

 $5 \times 1 = 5$

- a) Fourier series representation of the function $f(x) = x^2$ in the interval $-\pi \le x \le \pi$ is 9. $a_0 + \sum_{n} (a_n \cos \cos nx + b_n \sin \sin nx)$. Find the value of a_0 .
 - **b)** Find the polar form of 1 i.

 $u(t-a) = \begin{cases} 0, & \text{for } t < a \\ 1, & \text{for } t \ge a \end{cases}$ Evaluate the

- Laplace transform of it.
- **d)** If $A = (0\ 2\ 0\ 4)$, Find eigen values of the matrix A.
- **e)** Compute the Z-transform of $f(n) = na^n$

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

: Engineering Mathematics II 7. Course L: 3 : B.Tech 8. Program T: 1 9. Target P: 0 :60% C: 4

GROUP -B

(Short Answer Type Questions)

Answer *any three* of the following $3 \times 5 = 15$

- Define Analytic function. Prove that the function $f(z) = 2xy + i(x^2 y^2)$ is 10. nowhere [2+3]
- Use partial fraction method to evaluate inverse Laplace transform 11. of $f(s) = \frac{s+4}{s(s-1)(s^2+4)}$
- Using Cayley-Hamilton theorem find A^{-1} where $A = (1\ 2\ 0\ 2\ -\ 1\ 0\ 0\ 0\ -\ 1)$ Find $Z^{-1}\left[\frac{\left(3z^2-18z+26\right)}{\left(z-2\right)^2\left(z-1\right)}\right]$, using residue method. **12**.
- 13.

GROUP -C

(Long Answer Type Questions)

Answer *any two* of the following $2 \times 10 = 20$

- (i) Determine the analytic function f(z) = u + iv, if 14. $u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 2x + 1.$
 - (ii) Let c be a closed contour, described in positive sense in the z plane, and write

$$g(w) = \int_{c} \frac{z^3 + 2z}{(z-w)^3} dz$$
. Show that, $g(w) = 6\pi i w$, when w lies inside c .

[5+5]

- (i) Evaluate the integration using Residue theorem $\int_{c}^{c} \frac{\sin \pi z^2 + \cos \cos \pi z^2}{(z-1)(z-2)} dz$ where 15. *c*: |z| = 3
 - (ii) Find the Half range Cosine Series for $f(x) = (x 1)^2$, 0 < x < 1
- (i) Compute the Fourier transform of $f(x) = \{1, |x| < 10, otherwise\}$ 16.
 - (ii) Find Fourier integral representation of $f(x) = \{e^{-x}, x > 0 \}$ 0, x < 0. Hence, show that,

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

$$\int\limits_0^\infty \frac{\cos\cos\omega x + \omega\sin\sin\omega x}{1 + \omega^2} d\omega = \{0, \quad if \ x < 0 \ \frac{\pi}{2}, \quad if \ x = 0 \ \pi e^{-x}, \quad if \ x > 0$$

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato **Course Code: MTH11502**

7. Course : Engineering Mathematics II L: 3 : B.Tech 8. Program T: 1 9. Target :60% P: 0 C: 4

Question Bank Sample

Schoo	ol: SOET & SOLB Department: All Engin	epartment: All Engineering Branch				
Cour	se Code: MTH11502 Course Name: Engine	Course Name: Engineering Mathematics II				
Progr	ram: B. Tech. Semester: II	Semester: II				
Uı	nit Number: I	Unit Name: 1	Linear Alg	ebra		
Sl.N o.	Question	Level of Difficulty	Knowl edge Level	Cours e Outco me (CO)		
	Part A (Multiple Choice Questions) (1 mark ea	ch)				
1.	Rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 & 0 & 4 & -1 & 2 & 4 & 6 \end{bmatrix}$ is (a) 0 (b) 1 (c) 2 (d) 3	Easy	U	CO1		
2.	Let 2 and -3 be eigen values of a non-singular matrix A , then eigen values of A^{-1} are (a) $2, -3$ (b) $-2, 3$ (c) $\frac{1}{2}, -\frac{1}{3}$ (d) $-\frac{1}{2}, \frac{1}{3}$ For the linear transformation $T: R^3 \to R$ defined by $T(x, y, z) = 0$, the	Medium	U	CO2		
3.	For the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}$ defined by $T(x, y, z) = 0$, the nullity and rank of the transformation are respectively (a) 0, 2 (b) 3, 0 (c) 1, 2 (d) None of these	Difficult	U	CO3		
	Part B (Definition/Naming Questions) (2 marks 6	each)				
1.	Let $A = (0\ 2\ 0\ 4)$, using the definition of symmetric and skew-symmetric matrix, show that A can be represent as a sum of a symmetric and skew symmetric matrices.	Easy	R	CO1		
2.	Define basis and dimension of a vector space.	Medium	R	CO3		
3.	Define algebraic multiplicity and geometric multiplicity of an eigen value.	Difficult	R	CO2		
	Part C (Short Questions) (3-4 marks each)					
1.	Find the value of K , such that $(\cos \cos \theta \ \theta \ 0 \sin \sin \theta \ \cos \cos \theta \ 0 \ 0 \ K)$ is orthogonal.	Easy	U	CO1		

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

2. Find whether $S = \{(1, 2, 3), (2, 3, 1), (3, 2, 1)\}$ is a basis for \mathbb{R}^3 . Show that eigenvalues of a skew Hermitian matrix are purely imaginary Difficult	U	
	U	CO3
Or zero. Part D (Evplanation Pasad Questions) (5 marks each)		
Part D (Explanation Based Questions) (5 marks each)		1
1. Verify Cayley-Hamilton theorem for $A = (0\ 0\ 1\ 3\ 1\ 0\ - 2\ 1\ 4\)$.	U	CO2
Check whether the function $T: \mathbb{R}^2 \to \mathbb{R}^2$ as defined below are linear transformations or not, explain the reasons: i) $T(x, y) = (x + 2y, 2x - 3y)$ ii) $T(x, y) = (x + y, \sin \sin xy)$	U	CO3
3. If $A = (1\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\)$ then show that, $A^n = A^{n-2} + A^2 - I$, for $n \ge 3$.	U	CO1 & CO2
Part E (Questions Based on Reasoning) (5 marks each)	-	
Summarize reasons for which the system $x + y + z = 1$ $x + 2y - z = k$ 1. Easy $5x + 7y + az = k^2$ Admits (i) No solution (ii) Only one solution (iii) Infinitely many solution.	U	CO1
State why the following set is not vector space under the associated operations: $V = R^2$ and operations are defined as $\begin{pmatrix} x_1, y_1 \end{pmatrix} + \begin{pmatrix} x_2, y_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 + 1, x_2 + y_2 + 1 \end{pmatrix}$ and $k(x, y) = (kx, ky)$.	U	CO3
Let A be a real matrix such that $(I + A)$ is non-singular, I is identity matrix. Prove that the matrix $(I + A)^{-1}(I - A)$ is orthogonal if and only if A is skew-symmetric.	U	CO1 & CO2
Part F (Application Based Questions) (5-10 marks each)		
1. Apply elementary row operations for finding the inverse of the matrix $A = (-1123 - 11034)$.	AP	CO1
Find the matrix representation of the linear transformation given by, $T(x, y, z) = (x + y + z, x - y + 2z)$ Medium	U	СОЗ

3.

1.

2.

3.

Sl.

No

1.

2.

3.

1.

Year: I

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato **Course Code: MTH11502** : Engineering Mathematics II 7. Course L: 3 : B.Tech 8. Program T: 1 9. Target : 60% P: 0 C: 4 with respect to the bases $B = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}, B' = \{(1, 1), (0, 1)\}.$ **Determine** A^{-1} by using Cayley-Hamilton theorem for the matrix A = (1320 - 14 - 215).Difficult AP CO₂ Hence **find** the matrix represented by $A^{8} - 5A^{7} - A^{6} + 37A^{5} + A^{4} - 5A^{3} - 3A^{2} + 41A + 3I.$ Part G (Short Notes) (5 marks each) **Define** subspace of a vector space with an example. Also, show that the Easy intersection of subspaces of a vector space is a subspace of the vector U CO₃ space. Medium Write a short note on the diagonalization process of a matrix. U CO₂ Difficult **Define** the inverse of a matrix and show that matrix inverse is unique. U **CO1 Unit Number: II Unit Name: Vector Calculus & Complex Variables** Question Level of Knowledge **Difficulty** Course Level (Easy/ Outcome (Bloom's Medium/ (CO)Taxonomy) Difficult) Part A (Multiple Choice Questions) (1 mark each) What is the condition of two non-null vectors to be **Easy** perpendicular? R **CO-4** i) a.b = 1 ii) a.b = 2 iii) a.b = 0 iv) $b = \frac{1}{2}$. What can be said about Cauchy-Riemann equations Medium R **CO-5** for the analyticity of a complex valued function? It is i) necessary condition ii) sufficient condition iii) necessary and sufficient condition iv) None of these. Let $\overline{F(x, y, z)}$ be a vector point function. What is **Difficult** R **CO-4** div(curl F)? i) 1 ii) 2 iii) -1 iv) 0 Part B (Definition/Naming Questions) (2 marks each) **What** is the dot product of two vectors? Give example. **Easy** R **CO-4**

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

2.	What is poles of a complex valued function? How can one decide the existence of poles for a complex valued function by Laurent expansion?	Medium	R	CO-5
3.	Explain Cauchy's theorem. Provide examples.	Difficult	U	CO-5
	Part C (Short Questions) (3-4	marks each)		'
1.	Explain some properties of gradient of a scalar point function.	Easy	U	CO-4
2.	Find the directional derivative of $\varphi(x, y, z) = xy^2z + x^2z$ at $(1, 1, 2)$ in the direction $(2i + j - 2k)$.	Medium	R	CO-4
3.	Find the residue of the function $F(z) = \frac{z^2 + Sinz}{Cosz - 1}$ at its singular points.	Difficult	R	CO-5
	Part D (Explanation Based Question	ns) (5 marks e	each)	
1.	Find the constants a and b such that the surface $ax^2 - byz = (a + 2)x$ will be orthogonal to the surface $4x^2y + z^3 = 4$ at the point $(1 - i, 2)$.	Easy	R	CO-4
2.	Show that a function which is analytic everywhere including the point at infinity is constant.	Medium	U	CO-5
3.	Explain the basic difference between real valued function and complex valued function.	Difficult	U	CO-5
	Part E (Questions Based on Reason	ing) (5 marks	each)	
1.	Find the angle between the surfaces $x^{3} + y^{3} + z^{3} - 3xyz = 5$ and $x^{2}y + y^{2}z + z^{2}x - 5xyz = 8$ at the point (1, 0, 1).	Easy	R	CO-4
2.	Find Laurent series for the function $f(z) = \frac{e^z}{(z-1)^3}$ at $z = 1$.	Medium	R	CO-5
3.	Find the value of $\oint_C \frac{dz}{z-a}$ if (i) a lies inside C , (ii) a lies outside C .	Difficult	R	CO-5
	Part F (Application Based Questions	s) (5-10 marks	each)	

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

1.	Find $\oint_C \frac{e^{3z}dz}{(z-1)^4}$ where <i>C</i> is the circle $ z = 2$.	Easy	R	CO-5
2.	Show that the Green's theorem is satisfied in the plane	Medium		CO-4
	for $\oint_C \{(xy + y^2)dx + x^2dy\}$ where C is the closed		U	
	curve of the region bounded by $y = x$ and $y = x^2$.			
3.	Apply Stoke's theorem to find $\oint_C (ydx + zdy + xdz)$	Difficult		CO-4
	where C is the curve of intersection of		A	
	$x^{2} + y^{2} + z^{2} = a^{2}$ and $x + z = a$.			
	Part G (Short Notes) (5 ma	arks each)		
1.	Explain Gauss divergence theorem with an example.	Easy	U	CO-4
2.	Explain the concept of Laurent series. Provide examples.	Medium	U	CO-5
3.	Explain Cauchy's integral formula with an example.	Difficult	U	CO-5
U	nit Number: III	Unit Name: Fourier Series		
Sl. No	Question	Level of Difficulty (Easy/ Medium/ Difficult)	Knowledge Level (Bloom's Taxonomy)	Course Outcome (CO)
	Part A (Multiple Choice Question	ns) (1 mark ea	ch)	
1.	The period of the function $f(x) = \sin 2x $ is	Easy		
	(a) $\frac{\pi}{2}$ (b) π (c) 2π (d) $\frac{3\pi}{2}$		R	CO6
2.	The function $f(x) = \sqrt{1 - \cos x}$; $0 \le x \le 2\pi$ is	Medium	R	CO6
	represented by a Fourier series as			

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato **Course Code: MTH11502**

: Engineering Mathematics II 7. Course L: 3 : B.Tech T: 1 8. Program 9. Target :60% P: 0

C: 4

	α ∞ ∞				
	$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$, then a_0 is				
	(a) $\frac{3}{4}\pi$ (b) $\frac{4\sqrt{2}}{\pi}$ (c) $\frac{\sqrt{2}\pi}{4}$ (d) $\frac{6\sqrt{2}}{\pi}$				
3.	The function	Difficult	R	CO6	
<i>J</i> .	$f(x) = \begin{cases} -k, & -a < x < 0 \\ k, & 0 < x < a \end{cases}, f(x+2a) = f(x)$ will	Difficult	· ·		
	generate				
	(a) Saw-tooth waveform (b) Square wave form				
	(c) Triangular wave form (d) none of these				
	Part B (Definition/Naming Questions) (2 marks each)				
1.	Write the Dirichlet's condition for convergence of Fourier series.	Easy	R	CO6	
2.	Define Half-range Fourier Series.	Medium	R	CO6	
3.	What is Parseval's theorem in Fourier series?	Difficult	U	CO6	
Part C (Short Questions) (3-4 marks each)					
1.	A periodic function of period 2π is defined as	Easy			
	$f(x) = x , -\pi < x < \pi$, find its Fourier series expansion.		U	CO6	
2.	Obtain the Fourier series expansion of	Medium			
	$f(x) = x^2, -\pi < x < \pi$ and prove that $\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$		R	CO6	
	using Parseval's theorem.				
3.	Find the Fourier series representation of the function	Difficult			
	$f(x) = \frac{1}{4}(\pi - x)^2, \ 0 < x < 2\pi$		R	CO6	
Part D (Explanation Based Questions) (5 marks each)					

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

1.	Find the half range cosine series of the function	Easy	R	CO6
	$f(x) = \begin{cases} 2x; & \text{for } 0 < x < 1 \\ 2(2-x); & \text{for } 1 < x < 2 \end{cases}$			
	$\int (x)^{-1} (2(2-x));$ for $1 < x < 2$.			
2.	Obtain the half range sine series for $f(x) = e^x$ in	Medium		CO6
	Obtain the half range sine series for		U	
	0 < x < 1.			
3.	Find the half range cosine series of the function	Difficult		CO6
	$f(x) = (x-1)_{in}(0,1)$		U	
	$\sin^{(3)}(x)$ in $\cos^{(3)}(x)$.			
	Part E (Questions Based on Reason	ing) (5 marks	each)	L
1.	$(x; for 0 < x \le 1)$	Easy		CO6
	Expand the function $f(x) = \begin{cases} x; & \text{for } 0 < x \le 1 \\ 2 - x; & \text{for } 1 < x < 2 \text{ in} \end{cases}$			
			R	
	the interval $(0, 2)$ as a series of cosines.			
	F: 14 1 16	NA 1º		CO6
2.	Find the half range sine series of the function	Medium	_	000
	$f(x) = x - x^2$ for $0 < x < 1$.		R	
3.	Show that the Fourier series expansion of	Difficult		CO6
3.		Difficult		
	$f(x) = \left(\frac{\pi - x}{2}\right)^2 \text{in } 0 \le x \le 2\pi \text{ is } \frac{\pi^2}{12} + \sum_{n=1}^{\infty} \frac{\cos nx}{n^2}.$		R	
	Part F (Application Based Questions	s) (5-10 marks	each)	l
1.	Obtained the fourier series of the function	Easy		CO6
	$f(x) = \begin{cases} 0; & for -\pi < x < 0\\ \sin x; & for \ 0 < x < \pi \end{cases}$ and hence prove that		R	
	$\frac{1}{1\cdot 3} - \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} - \frac{1}{7\cdot 9} + \dots = \frac{1}{4}(\pi - 2)$			

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

2.	Find the fourier series of the function	Medium		CO6
	$f(x) = \begin{cases} -x+1; & for -\pi \le x < 0 \\ x+1; & for \ 0 \le x < \pi \end{cases}$ and hence show that		U	
	$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$			
3.	Expand $f(x) = x $ in Fourier series in the interval	Difficult		CO6
	$-\pi \le x \le \pi$ and hence prove that		A	
	$1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \dots = \frac{\pi^2}{8}$			
	Part G (Short Notes) (5 ma	arks each)		
1.	NA	Easy	U	CO6
2.	Discuss half rage Fourier series. Express the function	Medium		CO6
	$f(x) = \sin \frac{\pi x}{l}$ in half range cosine series in range		U	
	0 < x < l.			
3.	Discuss point of discontinuity in Fourier series.	Difficult	U	CO6
U	Unit Number: IV Unit N	ame: Introduct	ion to Transform C	alculus
Sl. No	Question	Level of Difficulty (Easy/ Medium/ Difficult)	Knowledge Level (Bloom' Taxonomy)	Cour se S Outc ome (CO)
	Part A (Multiple Choice Question	ns) (1 mark each		
1.	What is the value of $\left(e^{2t}\right)$? i) $\frac{1}{s+2}$ ii) $\frac{1}{s-2}$ iii) $\frac{1}{s}$ iv) none	Easy	Remembering	CO7

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

2.	Find Z-transform of $\frac{1}{n!}$	Medium	Remembering	CO7
	i) $e ext{ii)} \frac{1}{e} ext{iii)} e^z ext{iv)} e^{\frac{1}{z}}$	TVICATAIN		
3.	What is Fourier Sine transform of $e^{- x }$?	Difficult	Remembering	CO7
	i) $\frac{1}{1-s^2}$ ii) $\frac{1}{1+s^2}$ iii) $\frac{s}{1-s^2}$ iv) $\frac{s}{1+s^2}$			
	Part B (Definition/Naming Questions)	(2 marks eac	eh)	-
1.	Define damping rule of Z-transform.	Easy	Remembering	CO7
2.	Using definition, find the Laplace transform of $f(t) = te^{-at}$.	Medium	Remembering	CO7
3.	Find the Z-transform of $f(n) = n a^n$.	Difficult	Remembering	CO7
	Part C (Short Questions) (3-4 m	arks each)	•	•
1.	Find Z-transform of $sin(3n + 5)$.	Easy	Remembering	CO7
2.	Find Fourier Sine transform of $f(x) = 2x$, $0 < x < 4$	Medium	Remembering	CO7
3.	Explain existence condition and advantages of Laplace transform.	Difficult	Understanding	CO7
	Part D (Explanation Based Questions)	(5 marks eac	ch)	
1.	Explain convolution theorem for $f(x) = g(x) = e^{-x^2}$	Easy	Understanding	CO7
2.	Find the function whose Fourier sine transform is $f_s(s) = \frac{e^{-as}}{s}$	Medium	Remember	CO7
3.	Show that $\int_{0}^{\infty} \frac{dx}{(x^2 + a^2)(x^2 + b^2)} = \frac{\pi}{2ab(a+b)}$ applying Parseval's	Difficult		CO7
	identity for Fourier transform.		Understanding	
	Part E (Questions Based on Reasoning	<u> </u> g) (5 marks ea	ch)	L
1.	Find Z-transform of unit impulse sequence.	Easy	Remember	CO7
2.	Find the function whose Fourier transform is $(s) = \frac{1}{s^2 + is + 2}$.	Medium	Remember	CO7

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

3.	Solve $\int\limits_0^\infty \frac{\sin^2 ax}{x^2} dx$ applying Parseval's identity for Fourier transform.	Difficult	Applying	CO7
	Part F (Application Based Questions) (5-10 marks ea	ch)	
1.	Find u_2 and u_3 where $U(z) = \frac{2z^2 + 5z + 14}{(z-1)^4}$.	Easy	Remember	CO7
2.	Find the temperature distribution in semi-infinite bar with its end point and lateral surface insulated and with initial temperature distribution in the bar is prescribed by $f(x)$. Deduce the solution when $f(x) = e^{-ax}$	Medium	Understanding	CO7
3.	Apply Laplace transform technique for solving the following differential equation: $\frac{d^2y}{dt^2} + \frac{dy}{dt} = \{t^2, \ 0 < t < 10, \qquad t > 1, \ y(0) = 0,$	Difficult	Apply	CO7
	Part G (Short Notes) (5 mark	s each)		
1.	NA	Easy		
2.	NA	Medium		
3.	NA	Difficult		

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

<u>Lecture Notes – Sample</u>

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

Evaluation Sheet - Internal Assessment

		Name of the Student	Internal Assessment (30)					
Roll	Registration		Assignmen	Class Test	Case Study	etc.	Tota	
Number	Number		t				1	

Signature of HOD/Dean	Signature of Faculty
Date:	Date:

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato
 7. Course : Engineering Mathematics II
 8. Program : B.Tech
 Course Code: MTH11502
 L: 3
 T: 1

9. Target : 60% P: 0

C: 4

Evaluation Sheet - Mid Semester

Roll Number	Registration Number	Name of the Student	Marks (20)

Signature of HOD/Dean	Signature of Faculty
Date:	Date:

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

Planning for Remedial Classes - Mid Semester

Sl. No.	Name of Student	Roll No.	Reg. No.	Mid Sem Marks	Remedial Classes Held				Class test on the basis of Remedial Classes	End Sem Marks	Improve ment (Y/N)		
					Date Venue Time								
1.													
2.													

Signature of HOD/ Dean

Signature of Faculty

Date: Date:

Semester: II

6.	Name of the Facu	ılty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato	Course Code: MTH11502
7.	Course	: Engineering Mathematics II	L: 3

8. Program : B.Tech T: 1
9. Target : 60% P: 0

C: 4

COURSE END SURVEY INDIRECT ASSESSMENT

Sample format for Indirect Assessment of Course outcomes:
NAME:
ROLL
NO.:
REG. NO:
COURSE:
PROGRAM:

Please rate the following aspects of course outcomes of

Use the scale 1-5 (Poor – Excellent)

Course Outcome	Statement	1	2	3	4	5
S						
CO1						
CO2						
CO3						
CO4						
CO5						

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

INDIRECT ASSESSMENT CONSOLIDATION

ADAMAS UNIVERSITY, KOLKATA								
SCHOOL OF								
DEPARTMENT OF								
	CO Indirect Assessi	ment						
Programme:	Programme: Academic Year:2020-2							
Batch: 2020-22								
Course Code &								
Name:								
Course Outcome	Students Feed Back (5)	Attainment (100)						
CO1								
CO2								
CO3								
CO4								
CO5								
etc.								
Signature of HOD/D Date:	Dean	Signature of Faculty Date:						

: 60%

9. Target

Year: I

Semester: II

6.	Name of the Facu	Course Code: MTH11502	
7.	Course	: Engineering Mathematics II	L: 3
8.	Program	: B.Tech	T: 1

P: 0 C: 4

Evaluation Sheet (End Semester)

Roll Number	Registration Number	Name of the Student	Marks (50)

Signature of HOD/Dean	Signature of Faculty
Date:	Date:

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

Planning for Remedial Classes - End Semester

Sl. No.	Name of Student	Roll No.	Re g. No.	End Sem Marks	Remedia	al Clas	ses Held	I		Class test on the basis of Remedial Classes	Supple Exam Marks	Improvem ent (Y/N)
					Venue Time							
1.												
2.												

Signature of HOD/ Dean

Signature of Faculty

Date Date

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

Consolidated Mark Statement

			Total Marks			
			Mid	Internal	End	Total
			Semeste	Assessmen	Semeste	(100)
Roll	Registration		r	t	r	
Number	Number	Name of the Student	(20)	(30)	(50)	

Signature of Dean/HOD	Signature of Faculty
Date:	Date:

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

CO ATTAINMENT - GAP ANALYSIS & REMEDIAL MEASURES

ADAMAS UNIVERSITY, KOLKATA **SCHOOL OF** DEPARTMENT OF CO ATTAINMENT - GAP ANALYSIS & REMEDIAL MEASURES **Batch** 2020-22 **Academic Year:** 2020-21 **Course Code & Name** Name of the Coordinator **Year & Semester** I & I Direct Indirect CO CO **Target** CO Assessmen Assessmen Attainmen **Target** Attainmen **Action for** Modificatio t Gaps t t **Bridge the Gap** n CO₁ CO₂ CO3 CO4 CO₅

Signature of HOD/Dean Signature of Faculty

Date: Date:

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato **Course Code: MTH11502**

7. Course : Engineering Mathematics II L: 3 8. Program : B.Tech T: 1 9. Target :60% P: 0 C: 4

CO-PO ATTAINMENT

ADAMAS UNIVERSITY, KOLKATA **SCHOOL OF DEPARTMENT OF CO-PO ATTAINMENT** Academic 2020-**Programme** Year & Sem: & I Year: 21 Batch:2020-22 PS PS **PSO** PO PO PO PO PO PO PO **PO5 PO6** PO8 **Course Code Course Name** CO-PO **PO4** 0 0 0 10 12 1 2 3 2 11 3 Relationship **Mapping** Value Attainment

Signature of Faculty Signature of HOD/Dean

Date: Date:

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

PO ATTAINMENT OF THE COURSE

Signature of HOD/Dean	Signature of Faculty
Date:	Date:

Semester: II

6. Name of the Faculty: Dr. Avik Pradhan, Dr. Nav Kumar Mahato Course Code: MTH11502

7. Course : Engineering Mathematics II L: 3
8. Program : B.Tech T: 1
9. Target : 60% P: 0
C: 4

INSTRUCTIONS FOR FACULTY

Instructions for Faculty

- Faculty should keep track of the students with low attendance and counsel them regularly.
- Course coordinator will arrange to communicate the short attendance (as per University policy) cases to the students and their parents monthly.
- Topics covered in each class should be recorded in the table of RECORD OF CLASS TEACHING (Suggested Format).
- Internal assessment marks should be communicated to the students twice in a semester.
- The file will be audited by respective Academic Monitoring and Review Committee (AMRC) members for theory as well as for lab as per AMRC schedule.
- The faculty is required to maintain these files for a period of at least three years.
- This register should be handed over to the head of department, whenever the faculty member goes on long leave or leaves the Colleges/University.
- For labs, continuous evaluation format (break-up given in the guidelines for result preparation in the same file) should be followed.
- Department should monitor the actual execution of the components of continuous lab evaluation regularly.
- Instructor should maintain record of experiments conducted by the students in the lab weekly.
- Instructor should promote students for self-study and to make concept diary, due weightage in the internal should be given under faculty assessment for the same.
- Course outcome assessment: To assess the fulfilment of course outcomes two different approaches have been decided. Degree of fulfillment of course outcomes will be assessed in different ways through direct assessment and indirect assessment. In Direct Assessment, it is measured through quizzes, tests, assignment, Mid-term and/or End-term examinations. It is suggested that each examination is designed in such a way that it can address one or two outcomes (depending upon the course completion). Indirect assessment is done through the student survey which needs to be designed by the faculty (sample format is given below) and it shall be conducted towards the end of course completion. The evaluation of the achievement of the Course Outcomes shall be done by analyzing the inputs received through Direct and Indirect Assessments and then corrective actions suggested for further improvement.
- Submission Targets of Course Contents:
 - o S. No. 1 to 8 : Before Starting the Course
 - o S. No. 9 & 10 : After Mid Semester Examination
 - o S. No. 11 to 18: Immediately After End Semester Examination
 - o S. No. 19 to 22: After Declaration of Result of the Course