XKM 2/1 19.01.2023 Раздел 3 Основы теплотехники

Тема 3.1 Теплопроводность

План

- 1. Основные понятия и определения.
- 2. Закон Фурье. Коэффициент теплопроводности.
- 3. Передача теплоты через плоскую однослойную и многослойную стенки
- 4. Передача теплоты через цилиндрическую однослойную и многослойную стенки.
 - 5.Передача теплоты через шаровую стенку

Основная литература:

1 Крестин Евгений Александрович. Основы гидравлики и теплотехники Редактор: Смирнова Н. А. Издательство: Кнорус, 2020 г.

Серия: Среднее профессиональное образование Подробнее: https://www.labirint.ru/books/733774/

- 2 Брюханов О. Н, Мелик-Аракелян А.Т., Коробко В.И. Основы гидравлики и теплотехники: учебник (3-е издание), М.: Издательский центр «Академия», 2017.
- 3 Лашутина Н.Г. и др. Техническая термодинамика с основами теплопередачи и гидравлики: учебник- Л.: Машиностроение,1988.

Дополнительная литература:

- 1 Кудинов, В. А. Техническая термодинамика и теплопередача: учебник для среднего профессионального образования / В. А. Кудинов, Э. М. Карташов, Е. В. Стефанюк. -4-е изд., перераб. и доп. Москва: Издательство Юрайт, 2022. 454 с. (Профессиональное образование). ISBN 978-5-534-12196-4. Текст: электронный // Образовательная платформа Юрайт [сайт]. —-URL: https://urait.ru/bcode/495923.
- 2 Жуховицкий Д.А. Сборник задач по технической термодинамике: учебное пособие, второе издание-г. Ульяновк, 2007

Интернет-ресурсы:

- 1 Федеральный центр информационно-образовательных ресурсов. Режим доступа: http://fcior.edu.ru
- 2 Электронная библиотека. Электронные учебники. Режим доступа: http://subscribe.ru/group/mehanika-studentam/

1 Основные понятия и определения

Механизм передачи теплоты. *Теплопроводность* — молекулярный процесс передачи теплоты от одной части тела к другой или между отдельными соприкасающимися телами, если между ними существует температурный перепад.

Механизм передачи теплоты теплопроводностью обусловлен движением микроструктурных элементов тела (электронов, атомов, молекул) и зависит от физических свойств среды.

В газах перенос энергии теплопроводностью осуществляется за счет хаотичного молекулярного движения, диффузии молекул, интенсивность которой пропорциональна температуре. Происходит соударение отдельных молекул газа, обладающих различной кинетической энергией, что приводит к обмену энергией тепло-йога движения. При этом интенсивность движения молекул, обладающих первоначально большей кинетической энергией (скоростью), уменьшается, а интенсивность движения молекул, обладающих меньшей кинетической энергией, увеличивается.

В жидкостях и твердых диэлектриках передача теплоты осуществляется упругими волнами вследствие взаимодействия колеблющихся атомов или молекул. В твердых телах, например диэлектриках, отсутствуют свободные электроны, а их кристаллическая решетка образована из атомов, молекул или трупп молекул. Эти частицы совершают колебания относительно положения равновесия, удерживаемые межатомными (межмолекулярными) силами сцепления. При нагревании интенсивность колебания решеток (амплитуда колебаний) увеличивается и вследствие сил сцепления между частицами энергия колебаний (энергия теплового движения) передается соседним слоям частиц, т. о. происходит энергетический обмен между частицами и слоями тела. Этот процесс передачи энергии носит волновой характер, подобно, например, упругим звуковым волнам колокола, когда по нему ударяют.

Теплопроводность диэлектриков с повышением температуры обычно возрастает, но численные значения сравнительно малы из-за медленно протекающих процессов волнового переноса теплоты.

Для большинства жидкостей теплопроводность с увеличением температуры уменьшается (исключение составляют вода и глицерин), а с повышением давления возрастает.

В металлах перенос теплоты осуществляется главным образом вследствие диффузии свободных электронов. Доля упругих колебаний кристаллической решетки в общем процессе переноса теплоты незначительна из-за огромной подвижности электронов («электронного

газа»). По этой же причине теплопроводность металлов значительно выше диэлектриков и других веществ. При повышении температуры колебание кристаллической решетки не только способствует переносу энергии, но в то же время создает помехи движению «электронного газа», что сказывается на электро- и теплопроводности металлов. Теплопроводность чистых металлов (кроме алюминия) с повышением температуры уменьшается, особенно резко теплопроводность снижается при наличии примесей, что объясняется увеличением структурных неоднородностей, которые препятствуют направленному движению электронов и приводят к их рассеиванию. В отличие от металлов теплопроводность сплавов с возрастанием температуры увеличивается.

Температурное поле. *Температурным полем называется совокупность значений температур в данный момент времени во всех* точках рассматриваемого пространства, занятого телом.

Если температура поля t с течением времени τ изменяется, то оно называется t нестационарным и описывается уравнением

$$t = f(x, y, z, \tau),$$

где x, y, z — координаты точки поля.

Если же температура в каждой точке поля с течением времени остается неизменной, то такое температурное поле называется *стационарным*. Температура в этом случае является функцией только пространственных координат x, y, z:

$$t = f(x, y, z) \setminus dt/d\tau = 0.$$

В каждый конкретный момент времени в температурном поле можно выделить поверхности, образованные точками, имеющими одинаковые температуры. Такие поверхности называются *изотермическими*. В стационарном температурном поле изотермические поверхности с течением времени не меняют свой вид и расположение, в то время как в нестационарном поле они со временем изменяются.

Изотермические поверхности никогда между собой не пересекаются. Они или оканчиваются на границах тела, или замыкаются на себя, целиком располагаясь внутри самого тела.

Температурный градиент. Одной из важных характеристик температурного поля является температурный градиент, представляющий собой вектор, направленный по нормали к изотермической поверхности в сторону возрастания температуры.

На рисунке 3.1 изображены изотермические поверхности, температуры которых отличаются на Δt . Из рисунка видно, что интенсивность изменения температуры по различным направлениям (из точки A лучи n и l) неодинакова. Наибольшая разность температур на единицу длины наблюдается в направлении нормали n к изотермической поверхности, так как расстояние Δn между соседними изотермами при этом наименьшее.

Предел отношения изменения температуры Δt к расстоянию между изотермами по нормали Δn , когда Δn стремится к нулю, называется температурным градиентом:

grad
$$t = \lim_{n \to \infty} (\Delta t / \Delta n)_{\Delta n \to 0} = (dt / dn) n_0^{\rightarrow}$$
,

где n_0^{\rightarrow} — единичный вектор, который в последующих уравнениях опускается, так как рассматривается скалярная величина вектора.

В общем случае для различных точек одной и той же изотермической поверхности (например, точек A и B) градиент температуры различен не только по направлению, но и по величине. За положительное направление градиента принято направление возрастания температур.

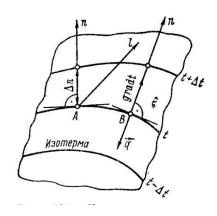


Рисунок 3.1 - К понятию температурного градиента

2. Закон Фурье. Коэффициент теплопроводности.

Основным условием распространения теплоты в пространстве является наличие разности температур в различных по точках. В случае передачи теплоты теплопроводностью необходимым условием является неравенство нулю температурного градиента в различных точках тела.

Основным законом передачи теплоты (энергии) теплопроводностью является гипотеза Фурье (1768—1830), согласно Котором элементарное

количество теплоты dQ_v проходящей через элементарную площадь изотермической поверхности dF за элементарный промежуток времени $d\tau$, пропорционально температурному градиенту (dt/dn):

$$dQ_{\tau} = -\lambda dF d\tau \operatorname{grad} t = -\lambda dF d\tau (dt/dn).$$

Коэффициент пропорциональности λ характеризует способность вещества проводить теплоту и называется *коэффициентом теплопроводности*.

Количество теплоты, проходящей в единицу времени черен единицу площади изотермической поверхности, называется плотностью теплового потока (Bt/m^2):

$$q^{\rightarrow} = dQ / dF d\tau = -\lambda (dt/dn) = -\lambda \text{ grad } t.$$

Так как теплота всегда распространяется от более нагретых частей тела к менее нагретым, то и вектор плотности теплового потока q направлен по нормали к изотермической поверхности в сторону убывания температуры. Таким образом, оказывается, что векторы grad t и q лежат на одной нормали к изотерме, но направлены в противоположные стороны (рис. 3.1) Этим и объясняется появление знака минус в уравнениях . Абсолютное значение вектора q (скаляр) обозначим q, т.е. |q| = q

Практика и многочисленные эксперименты подтвердили справедливость гипотезы Фурье, и уравнение носит название закона Фурье или основного уравнения теплопроводности.

Количество теплоты, проходящей через произвольную изотермическую поверхность площадью F в единицу времени, называется тепловым потоком (B_T):

$$Q = \int q dF = -\int \lambda (\partial t/\partial n) dF = -\lambda (\partial t/\partial n) F.$$

Коэффициент теплопроводности. Коэффициент теплопроводности

$$\lambda = |\neg q|/| \operatorname{grad} t| = Q/[F(\partial t/\partial n)]$$

количеству теплоты, проходящей через единицу численно равен изотермической поверхности в единицу времени при температурном Он измеряется в Вт/(м-К) и является градиенте, равном единице. теплофизической характеристикой вещества. Для различных материалов он неодинаков и в общем случае зависит от структуры, плотности, температуры, влажности. Для большинства веществ коэффициенты теплопроводности определены экспериментально.

Наилучшими проводниками теплоты являются металлы, наихудшими — газы.

С повышением температуры теплопроводность газов возрастает. Среди них резко выделяются гелий и водород, теплопроводность которых в 5—10 раз больше вследствие малой молекулярной массы, а следовательно, большей скорости диффузии молекул.

С изменением давления коэффициент теплопроводности идеальных газон практически не изменяется. Исключение составляют очень низкие и чрезмерно высокие давления. Совсем по-другому обстоит дело с водяным паром и другими реальными газами, коэффициенты теплопроводности которых заметно отличаются от идеальных и существенно зависят от давления.

Теплоизоляционные и многие строительные материалы (кирпич, бетон, дерево и др.), обладающие пористым строением, имеют сравнительно низкие коэффициенты теплопроводности — 0,02—3,0 Вт/(м-К). Именно воздух или газы, заполняющие поры и полости и имеющие весьма малые значения д, оказывают существенное влияние на теплопроводность материала в целом. Пористые материалы передают теплоту в основном через твердый компонент («скелет») и в меньшей степени через воздушные ячейки, так как теплопроводность твердого компонента в десятки раз превышает теплопроводность воздуха. Поэтому коэффициент теплопроводности пористых материалов сильно зависит от соотношении масс «скелета» и воздушных включений, т. е. от объемной плотности материала. С уменьшением объемной плотности, т.е. с утонением стенок ячеек, передача теплоты по «скелету» материала ухудшается, но при этом увеличиваются размеры воздушных включений, что приводит к появлению внутри их организованного движения молекул, т. е. к конвективному теплообмену. С температуры ухудшаются теплоизоляционные свойства понижением материалов. Это объясняется увеличением коэффициента пористых теплопроводности воздуха и возрастанием роли лучистого теплообмена между стенками воздушных ячеек, а также возникновением свободной конвекции в порах и ячейках материала.

На теплопроводность теплоизоляционных материалов большое влияние оказывает степень их увлажненности. С увеличением влажности коэффициент теплопроводности возрастает, так как поры вместо воздуха заполняются водой, теплопроводность которой почти в 25 раз выше, чем у воздуха. При температурах ниже 273 К (0 °C) вода превращается в лед, теплопроводность которой в четыре раза выше, чем у воды. Таким образом, коэффициент теплопроводности изоляционного материала в результате увлажнения и замерзания в нем влаги будет почти в 100 раз выше, чем сухого

материала, что приведет к значительному увеличению теплопритока в помещение через теплоизоляцию.

Для влажных пористых материалов коэффициент теплопроводности значительно выше, чем для сухого материала и воды в отдельности. Так, для сухого кирпича λ = 0,35 Bt/(м-К), для воды λ = 0,55 Bt/(м- К), а для влажного кирпича λ = 1,05 Bt/(м-К), что объясняется отличием физических свойств адсорбированной (связанной в порах) воды от свойств свободной воды и наличием конвективного переноса теплоты в результате капиллярного движения влаги внутри пористого материала.

3. Передача теплоты через плоскую однослойную и многослойную стенки

Однослойная Рассмотрим стенка. перенос теплоты теплопроводностью через однослойную однородную плоскую стенку Толщиной δ, длина и ширина которой бесконечно велики по сравнению с толщиной. Коэффициент теплопроводности материала λ . Температуры t_1 и t_2 на поверхностях стенки поддерживаются Постоянными, причем $t_1 > t_2$. При этих условиях стационарное поле распространяется перпендикулярно к *x*:(рис. 3.2, a).Требуется определить стенке ВДОЛЬ оси

распределения температур по толщине стенки и количество теплоты Q_v проходящей через стенку площадью F за время τ .

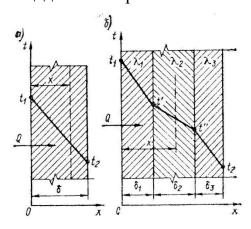


Рисунок 3.2 - Передача теплоты теплопроводностью через плоскую стенку: а — однослойную; б — многослойную

Распределение температур по толщине стенки подчиняется закону прямой линии.

$$q = (t_1 - t_2)/(\delta/\lambda),$$

где t_I — t_2 — температурный напор; δ/λ — термическое сопротивление стенки; λ/δ — тепловая проводимость материала.

Таким образом, количество теплоты, проходящей через единицу поверхности стенки в единицу времени, прямо пропорционально температурному напору и обратно пропорционально термическому сопротивлению.

Общее количество теплоты, проходящей через стенку с площадью поверхности F за промежуток времени τ при плотности теплового потока q

$$Q_{\tau} = qF\tau = [(t_1 - t_2)/(\delta/\lambda)] F\tau$$
.

В расчетной практике чаще оперируют не общим количеством теплоты (Дж), а тепловым потоком (количеством теплоты в единицу времени, Вт), тогда формула примет вид

$$Q = [(t_1 - t_2)/(\delta/\lambda)] F.$$

Температура на поверхности стенки:

$$t_1 = t_2 + q\delta/\lambda$$
 или $t_2 = t_1 - q\delta/\lambda$.

В общем случае температура в любом сечении стенки

$$t_{x}=t_{1}-qx/\lambda.$$

Многослойная стенка. В практике часто встречаются стенки, состоящие из нескольких слоев различных материалов (рис. 3.2,6).

Рассмотрим перенос теплоты через многослойную стенку, содержащую, например, три плотно прилегающих друг к другу слоя толщиной δ_1 , δ_2 , δ_3 . Коэффициенты теплопроводности этих слоев λ_1 , λ_2 , λ_3 . Температуры наружных поверхностей t_1 и t_2 причем $t_1 > t_2$, т. е. заданы граничные условия первого рода.

Так как при стационарном температурном поле тепловой поток Q, проходящий через многослойную стенку, одинаков для каждого слоя, то можно записать для первого, второго и третьего слоев:

$$Q = (t_1 - t') F/(\delta_1/\lambda_1); Q = (t' - t'') F/(\delta_2/\lambda_2); Q = (t'' - t_2) F/(\delta_3/\lambda_3).$$

Полученные уравнения решаются относительно разностей температур:

$$t_1 - t' = Q (\delta_1/\lambda_1)/F;$$

 $t' - t'' = Q (\delta_2/\lambda_2)/F;$
 $t'' - t_2 = Q (\delta_3/\lambda_3)/F.$

Сложив левые и правые части этих уравнений, найдем

$$t_1 - t_2 = Q \left(\delta_1 / \lambda_1 + \delta_2 / \lambda_2 + \delta_2 / \lambda_2 \right) / F$$

откуда следует, что тепловой поток, проходящий через трехслойную стенку,

$$Q = (t_1 - t_2) F/(\delta_1/\lambda_1 + \delta_2/\lambda_2 + \delta_3/\lambda_3),$$

$$q = (t_1 - t_2) / \sum_{i=1}^{3} (\delta_i / \lambda_i).$$

Тепловой поток через стенку, содержащую п слоев,

$$Q = (t_1 - t_{n+1}) F / \sum_{i=1}^{n} (\delta_i / \lambda_i),$$

где стоящая в знаменателе сумма представляет собой полное термическое сопротивление многослойной стенки.

4. Передача теплоты через цилиндрическую однослойную и многослойную стенки.

Цилиндрическая стенка. Рассмотрим однослойную цилиндрическую стенку (трубу), длина которой сравнительно с диаметром бесконечно велика. Поэтому температура стенки изменяется только в радиальном направлении и, следовательно, изотермы в стенке трубы имеют вид концентрических цилиндрических поверхностей. Температурное поле будет одномерным. Температуры на поверхностях стенки t_1 и t_2 постоянны (граничные условия первого рода). Так как $t_1 > t_2$, то тепловой поток направлен по радиусу к наружной поверхности трубы. Коэффициент теплопроводности материала трубы λ в рассматриваемом интервале температур не изменяется. Необходимо найти характер распределения температур в стенке цилиндра и тепловой поток.

Для установления зависимостей возьмем участок трубы длиной / (рис. 3.3, a), На расстоянии r от оси трубы выделим в стенке цилиндрическую поверхность толщиной dr; ее площадь $F=2\pi rl$. Так как толщина слоя dr — величина бесконечно малая, то и разность температур на границах слоя также будет бесконечно малой — dt.

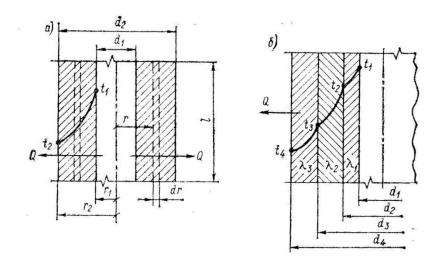


Рисунок 3.3 - Передача теплоты теплопроводностью через цилиндрическую стенку: а — однослойную; б — многослойную

Распределение температур в стенке цилиндрической трубы подчиняется закону логарифмической кривой.

Тепловой поток через стенку определится из выражения:

$$Q = 2\pi \lambda l (t_1 - t_2) / \ln (d_2/d_1).$$

Тепловой поток, проходящий через цилиндрическую стенку, может быть отнесен к единице площади внутренней (q_1) или внешней (q_2) поверхности либо к единице длины трубы (q_1) . В последнем случае он называется *линейной плотностью теплового потока* (Вт/м), в отличие от общепринятой плотности теплового потока (Вт/м²). Расчетные формулы принимают вид :

$$q_{1} = \frac{Q}{\pi d_{1}l} = \frac{2\lambda (t_{1} - t_{2})}{d_{1} \ln (d_{2}/d_{1})};$$

$$q_{2} = \frac{Q}{\pi d_{2}l} = \frac{2\lambda (t_{1} - t_{2})}{d_{2} \ln (d_{2}/d_{1})};$$

$$q_{l} = \frac{Q}{l} = \frac{2\pi\lambda (t_{1} - t_{2})}{\ln (d_{2}/d_{1})} = \frac{\pi (t_{1} - t_{2})}{[1/(2\lambda)] \ln (d_{2}/d_{1})}.$$

В многослойной цилиндрической стенке при рассматриваемом нами стационарном режиме через все слои проходит одинаковый по величине тепловой поток. Рассмотрим (рис, 16.3, б) трехслойную цилиндрическую стенку (трубу) с внутренним диаметром d_1 , наружным d_4 и промежуточными d_2 и d_3 . Коэффициенты теплопроводности материала слоев λ_1 , λ_2 , λ_3 .

Температуры внутренней поверхности стенки t_1 и наружной t_4 в процессе переноса теплоты не изменяются.

Для каждого слоя напишем уравнение теплового потока вида:

$$\left. \begin{array}{l} Q = \left[2\pi\lambda_1 l/\ln\left(d_2/d_1\right) \right] \, (t_1-t_2); \\ Q = \left[2\pi\lambda_2 l/\ln\left(d_3/d_2\right) \right] \, (t_2-t_3); \\ Q = \left[2\pi\lambda_3 l/\ln\left(d_4/d_3\right) \right] \, (t_3-t_4). \end{array} \right\}$$

Решив уравнения относительно разности температур и почленно сложив их, получим

$$t_1 - t_4 = \frac{Q}{2\pi l} \left(\frac{1}{\lambda_1} \ln \frac{d_2}{d_1} + \frac{1}{\lambda_2} \ln \frac{d_3}{d_2} + \frac{1}{\lambda_3} \ln \frac{d_4}{d_3} \right),$$

откуда тепловой поток через трехслойную цилиндрическую стенку

$$Q = 2\pi l (t_1 - t_4) / \left(\frac{1}{\lambda_1} \ln \frac{d_2}{d_1} + \frac{1}{\lambda_2} \ln \frac{d_3}{d_2} + \frac{1}{\lambda_3} \ln \frac{d_4}{d_3} \right).$$

По аналогии для цилиндрической стенки, имеющей п слоев

$$Q = \frac{2\pi l (t_1 - t_{n+1})}{\sum_{i=1}^{n} (1/\lambda_i) \ln (d_{i+1}/d_i)}.$$

Температуры на границах промежуточных слоев (рис. 3.3, б) находят из уравнений:

$$t_2 = t_1 - Q \ln (d_2/d_1)/(2\pi\lambda_1 l);$$

$$t_3 = t_2 - Q \ln (d_3/d_2)/(2\pi\lambda_2 l),$$
 или
$$t_{i+1} = t_1 - \frac{1}{2\pi l} \, Q \sum_{i=1}^l \frac{1}{\lambda_i} \ln \frac{d_{i+1}}{d_i} \, .$$

При расчете теплопроводности через тонкостенные трубы с достаточной точностью можно пользоваться формулами, выведенными для плоской стенки.

5.Передача теплоты через шаровую стенку

Шаровая стенка. Рассмотрим процесс стационарной теплопроводности через однослойную шаровую стенку с неизменным коэффициентом теплопроводности λ . На внутренней (радиуса r_{l}) и внешней (радиуса r_{2}) поверхностях сферы поддерживаются температуры t_{l} и t_{2} . Так как t_{l} и t_{2}

постоянны и $t_1 > t_2$, то температуры в стенке шара изменяются только в направлении его радиуса, от внутренней к наружной поверхности. Выделив в стенке сферы шаровую поверхность радиуса r бесконечно малой толщиной dr с разностью температур dt, запишем выражение для теплового потока на основании закона Фурье:

$$Q = \frac{4\pi\lambda (t_1 - t_2)}{1/t_1 - 1/t_2} = \frac{2\pi\lambda \Delta t}{1/d_1 - 1/d_2} = \pi\lambda \frac{d_1d_2}{\delta} \Delta t.$$

Контрольные вопросы

- 1. Что называется теплообменом?
- 2. Что такое тепловой поток?
- 3. Что такое поверхностная плотность теплового потока?
- 4. Какие величины влияют на теплопроводность?
- 5. Что такое термическое сопротивление стенки?
- 6. Где поверхностная плотность теплового потока, проходящего через цилиндрическую стенку, больше: на внутренней или на внешней ее поверхности?