
This document has been provided to the Modern Warfare Cubed team as
is and is kept for archival purposes, no changes have been made to it,

which make it potentially inaccurate for Modern Warfare Cubed.

Click here to see the official Modern Warfare Cubed docs

Vic’s Modern Warfare 3.0
Content Guide

Adding new reticles
​ In the ‘advanced warfare’ package you will find “Reticles.java,” which is where all the reticles
go. All reticle textures should be added under the “crosshairs” folder. For holographic reticles, they are
added like so:

​ For sniper reticles, they are added the same, but without the “texture scale” argument as textures
will always fill the scope.

Assigning reticles to holographic sights
​ All scopes are made in Attachments.java. Holographic sights follow this format:

​ Reticles is a list of reticles, so you can add multiple, like so:

​ In addition, there is an optional additional parameter made for scopes like the OKP-7, where they
are circular called “withRadialCut”.

​ This parameter will make the holographic screen take on a circular shape. Another important
thing to note is that the positioning does follow a live update, so if you make chances (while in debug
mode in Eclipse, of course) it will reflect immediately in game.

Assigning reticles to sniper scopes
​ Sniper scopes are set up largely the same way– except you use a method called
“withSniperReticle” which only accepts a single reticle, like so:

Assigning magazine rotation points
​

Naming conventions for animations
​ If you want your animations to be set up properly in game, they need to be exported properly
from BlockBench. The following are the names that must be set for each animation:

Animation Technical Name

Load load

Unload unload

Load Empty loadempty

Compound Reload* reload

Compound Reload Empty* reloadempty

Tactical Reload* reloadtactical

Draw draw

Inspect inspect

Eject Spent Round ejectspentround

Eject Spent Round Aimed ejectspentroundaimed
*Supports two-magazine functionality (also known as “tactical reloading functionality”)

​ The filename is also important, it should look like the following:

Naming conventions for parts

Part Technical Name

Weapon main

Left Hand lefthand

Right Hand righthand

Magazine magazine

Extra Magazine magazine_extra

Slide or Action action

Recoil Parameters

1.​ Recoil Group: 0 for Assault Rifle type recoil, 1 for Pistol type recoil, 2 for Shotgun/Sniper/Other

type
2.​ General power of the animation, standard is about 50
3.​ How much the gun rotates up

4.​ Translation on recoil, should look like this:​

5.​ Should be a very small value (i.e. 0.05), changes how fast the gun recovers from the initial

impulse of the recoil

Beizer

Shell Type

Slide Recoil

.withActionPiece specifies all the slides that this will work with. It can accept multiple attachments (i.e.
for the glock you would want to include the razorback slide). .withActionTransform specifies the
transform position.​

​
​ You can mess around with the action position in game by typing:
​ /wdb weapon slide edit​
​ Then​
​ /wdb weapon slide setpos 0.0 0.0 0.0​
​ Where the three numbers are x, y, and z respectively. You can then input those numbers into the
transform’s position argument in order to set its position.

Screen Shake

To edit the screen shake, /wdb weapon shake edit then /wdb weapon shake set 0.0 0.0

Muzzle Flash

Regenerating the Weapon Icon Sheet
​ In order to optimize loading, a weapon icon sheet is generated. In order to regenerate the weapon
icon sheet, you first need to turn on liverender (/wdb weapon liverender toggle). You then need to go into
the inventory and load all the guns. When you are done type (/wdb weapon buildsheet) and it will export
guniconsheet.png to your run folder. You then put it in textures/gui/

Moving the Modification GUI for a Weapon
​ In game, type /wdb weapon gui and it will toggle GUI rearrangement, drag the GUI piece where
you want and then type /wdb weapon gui print and it will export an array to console. In the weapon
factory, you can then use .withGUIPositions([insert array here]) to set them.

Skin
GunSkins.java
Textures go in the textures/models folder

 public static ItemSkin Example;​
​
 public static void init(Object mod, ConfigurationManager

configurationManager, CompatibleFmlPreInitializationEvent event) {​
 ​
 ​ GunSkins.Example = new

ItemSkin.Builder().withTextureVariant([textureName]).withModId(ModernWarfar

eMod.MODID)​

.withCreativeTab(ModernWarfareMod.AttachmentsTab).withName("ExampleSkin")​
 ​
 .build(ModernWarfareMod.MOD_CONTEXT, ItemSkin.class);​
​
 CommonRegistry.gunSkins.add(GunSkins.Example);​
 ​
 }

Registering sounds in the universal registry
​ In advanced warfare, you will find a class called ‘UniversalSoundRegistry.’ Within the init()
method, you may register your sounds as follows:

Scopes using white phosphor

Use the line withWhitePhosphor() below hasNightVision().

Adding gun recipes

Use the line .withModernRecipe(ItemStack…stacks) which accepts a set of itemstacks as the parameter.
For example, should I want the gun to be crafted with four gunmetal plates and four polymer composite
plates, then I could do:

.withModernRecipe(new ItemStack(Ores.GunMetalPlate, 4), new

ItemStack(Ores.PolymerCompositePlate, 4));

Adding items used for crafting

​ In the old system, custom item classes are created for item crafting. Examples include
ItemGunmetalIngot and ItemPlasticPlate. Instead, we will now use CraftingItem. Here is how a plastic
plate looks in the current version:

PlasticPlate = new ItemPlasticPlate();

And it should now look like this:

PlasticPlate = new CraftingItem("PlasticPlate", ModernWarfareMod.MODID,

Ores.SyntheticPlastic, 0.5, ModernWarfareMod.BlocksTab);

* This example assumes a recovery scrap item of Synthetic Plastic with a yield of 50%

Vests

.withPercentDamageBlocked(0.5)

Crafting Entries
​
Without OreDictionary:

new CraftingEntry(Items.APPLE, 4)

With OreDictionary, the first argument is the default item. This is the item that will be created when
dismantled. The second argument is the OreDictionary term.

new CraftingEntry(Items.APPLE, "apple", 4)

Adding attachment recipes (including bullets)

Bullet3006Springfield = new

ItemBullet.Builder().withModId(ModernWarfareMod.MODID)​

.withCreativeTab(ModernWarfareMod.AmmoTab).withName("Bullet3006Springfield")​
 .withModel(new com.vicmatskiv.mw.models.BulletBig(),

"Bullet.png")​
 .withModernRecipe(CraftingGroup.BULLET, new

CraftingEntry(Ores.CopperIngot, 5))​
 [...]

For Default Recipes:
com/vicmatskiv/crafting/defaultRecipes

Animating Custom Parts
setupCustomKeyedPart(ItemAttachment<Weapon> action, String animationFile, String partKey)

Sets up an attachment's animations for every animation that it is available for

●​ action is the piece that will be animated
●​ animationFile is the name of the animation file (like how you usually specify it when

setting up for setupModernAnimations).
●​ partKey is the name of the part in the animation JSON (in BB)

Example of Setting Up Eject Spent Round
.setupModernEjectSpentRoundAllAnimation(Attachments.MAC10Action, "mac10", "bolt")

This method sets up aimed and non-aimed variants

How to make VMW mobs attack eachother:

Replace “zombieBlistered” with the name of the mob you want it to target

.withAiTargetTask(1, e -> new

BetterAINearestAttackableTarget<>((EntityCreature) e, EntityCustomMob.class,

"zombieBlistered", false))

​

