
 

Adding a File System based Consistent 
Method to Identify Iceberg Tables’ 
Current Snapshot 
Original Authors: Ashvin Agrawal, Russell Spitzer 

Last Updated: Oct-28-2024 

 

Goal 
The goal of this proposal is to enhance the interoperability and self-sufficiency of Iceberg tables 
representation on the file system by replicating the snapshot's metadata file name, a.k.a. 
version-hint, from the catalog to the file system. This makes the table representation on the FS 
complete and eliminates the need for catalog dependency in certain read only scenarios. This 
proposal builds on the decision to move towards a catalog-centric approach to broaden the 
adoption and utility of Iceberg tables. 

Use Case 
Microsoft Fabric now supports Iceberg tables in OneLake[4], enabling users to leverage Iceberg 
tables in addition to Delta Lake tables with Microsoft Fabric’s compute engines. OneLake RBAC 
assigns roles to manage permissions for its users. Users can assign these roles to either 
individual members or groups. To load a table, users can either integrate with a catalog or 
directly provide the Iceberg table’s directory path, particularly when OneLake's directory-level 
ACLs are sufficient. Using the file system (FS) based integration reduces the number of 
components required in the read query execution path. This is especially beneficial when the 
catalog is inaccessible from Fabric (e.g. on-prem catalog) and during pre-production scenarios. 
Our internal engines that generate table metadata are designed to fully represent the FS and 
ensure the liveness and accuracy of metadata on the FS with minimal cost. This makes 
FS-based integration an effective solution for read workloads. Users are also able to bring in 
tables produced by other engines external to Fabric. However, in the absence of a standard, 
externally generated Iceberg tables may lack the version-hint-like file or contain non-standard 
custom metadata. This complicates integration and makes maintenance challenging. Saving the 
snapshot’s metadata file name on the filesystem offers a practical alternative to the catalog for 
read-only situations. This strategy addresses common issues encountered in real-world 
applications, as evidenced in this use case.  

1 



 

Introduction 
Iceberg is a widely used table format that enables seamless engine interoperability. Its primary 
strength lies in its ability to allow any query engine to process data written by another engine, 
provided the reading engine has access to the table’s data and metadata files stored in an 
Object Store or File System (FS) and knows the desired snapshot’s (typically the current 
snapshot) metadata file name. Since a snapshot is immutable, multiple engines can read it 
simultaneously without any conflicts enabling high concurrency. When data access needs to be 
governed, a Catalog component is used to manage and serve access control policies. While a 
catalog can enforce table-level ACLs by distributing file access tokens, column and row-level 
ACLs are generally enforced by the query engine [3]. In some scenarios, central catalog service 
is used by multiple engines, whereas in others where fine-grained ACLs are absent, a separate 
catalog may be avoided. 
 
The use of a catalog is also recommended for achieving high efficiency and reliability in 
concurrent table write operations. The current Iceberg specification suggests that a catalog 
should manage a snapshot’s metadata file name, referred to in this document as SFN. This is 
because object stores lack certain features necessary for efficiently and atomically maintaining 
the SFN, making this design choice essential. However, the current specification requires that 
the SFN be stored exclusively in the catalog. This restriction introduces a significant limitation: it 
renders the table representation on the FS incomplete. Not providing a way to fully 
represent the table on the FS contradicts the objective of a table format.  
 
Iceberg metadata is composed of several key components, including manifest files, manifest 
lists, and snapshots (metadata json files). These are all stored in the FS, usually alongside the 
data files. If the query engine knows a snapshot’s metadata file name (SFN), the FS metadata is 
enough for it to perform a read query. Unlike the previously discussed metadata components, 
the SFN, indicating the current state of the table, is not stored in the FS; rather, it is kept in the 
catalog only.  
 
Although retrieving the most recent snapshot from the catalog is ideal, it need not be a strict 
requirement in all scenarios. In certain production environments, FS reliability and governance 
issues are absent, and requiring catalog integration impedes interoperability. The Hadoop 
catalog implementation partially addressed this by generating a version-hint file [2], however, it 
is not part of the specification. To address this issue, users often rely on ad hoc mechanisms, 
inspired by the Hadoop Catalog’s version-hint-like file, to store SFN metadata in the FS. It is 
essential to clarify that we mention the Hadoop catalog, which has known limitations, merely to 
explain the concept. 
 
This proposal aims to introduce an optional step that entails replicating SFN metadata 
present in the catalog onto the FS. This would make the table representation on the FS 
complete and self-sufficient, thereby enhancing its capability to support wider 
interoperability use cases. 
 

2 



 

The proposal decouples the SFN metadata file specification from the method of creating the 
SFN metadata file and provides various options for generating this information. To ensure 
simplicity and backward compatibility, generating the SFN metadata file is an optional step and 
is implemented with a less stringent consistency guarantee. 

SFN Generation Options 
It is important to note that the proposal does not add a new step in the transaction execution. 
Instead, the creation of SFN files will occurs after a commit, i.e. SFN generation will be 
asynchronous or not guaranteed. Possible methods for managing SFN file in this context 
include: 

Management through Catalog using notification (proposal [5]) 
This approach involves configuring a notification listener that responds to catalog events for new 
table snapshot creation and initiates the SFN file generation on the FS. The notification listener 
can be hosted by the catalog, since the listener needs to have necessary authorization to add 
files in the table's directory. The listener approach ensures that the FS is updated in near 
real-time. This approach would leverage a feature that would be available in the catalog and 
would be customizable, without imposing any extra burden on the users. 

Management through the Catalog 
In this approach, the SFN file is generated after the commit by the catalog. Creating the SFN 
inline offers the same benefits as the notification listener method; however, it is more tightly 
coupled and less flexible. 

Management using an external maintenance task  
This method involves deploying a 3rd component to monitor the catalog for any changes and 
update the SFN information accordingly. This method allows for asynchronous processing and 
operates independently of the catalog's real-time functions. However, the maintenance task 
relies on polling and introduces a lag between when changes occur in the catalog and when 
they are reflected in the FS. Additionally, it also requires managing a new component and may 
increase the load on the catalog if a large number of tables are present. 

Proposal for SFN Meta Naming Options 
The second part of this proposal addresses SFN naming and contents. There are a few 
constraints to consider: 1) scenarios where multiple tables are stored in the same FS directory 
for performance reasons, and 2) the high cost of listing files in a directory. Various commercial 
systems, such as Fabric, BigLake, and SNOW, employ a metadata publish pattern. In these 
cases, a single writer publishes the table metadata to mitigate conflicts, with some latency 
expected. Additionally, the most common use case involves having the current snapshot, which 

3 



 

is generally sufficient for these purposes.The proposal aims to avoid ambiguity while 
maintaining simplicity and low cost. Several naming conventions for SFN meta files are 
suggested. 

Table Identifier (namespace + name) based naming (Option 1) 
One straightforward approach is to use a fixed name for the SFN meta file, i.e. base the 
filename on the table identifier. Deriving the SFN meta file name from the table identifier 
eliminates the need for file listing and ensures that the file can be easily located and updated. 
The table reader only needs the directory path as input. This approach borrows from the current 
HadoopCatalog implementation (which as mentioned earlier has known limitations), in which the 
SFN-file name is fixed to version-hint and is table name agnostic. 
 
One limitation of this approach is that a table rename operation would result in creation of a 
SFN file with a new name. The consumer might continue checking the outdated file and serve 
old data. To mitigate this issue, we propose to link the new SFN file in the old file. The old file 
should expire after a certain period. This ensures that any processes or users referencing the 
old SFN file can still locate the updated metadata without immediate disruption. Optionally, in 
scenarios where different branches of the table are managed, a branch-specific naming 
convention could be employed. However, identifying SFN meta files for other branches would 
require file listing. 
 
For e.g. 
<namespace>_<table_name>_<branch>.ver 
<namespace>_<table_name>_main.ver (for the main branch) 
 

Ordinal-Based Naming (Option 2) 
Another option is to incorporate an ordinal (like timestamp) into the file name. This method 
allows for easy tracking of the snapshot history over time and avoids the need to “replace” SFN 
files. This mimics a write-ahead-log behavior. However, it does introduce the need for file listing 
to identify the latest snapshot, which might be an acceptable trade-off in use cases where 
rename and table recreation are popular. Additionally, this approach could lead to a proliferation 
of files over time, potentially complicating file management and increasing storage costs. 
Regular cleanup and maintenance routines would be necessary to mitigate these issues, adding 
operational complexity.  
 
A solution to address the many files issue is to store SFN files in a subfolder inside or alongside 
the metadata folder. This method limits the number of files at the sub folder level and reduces 
the payload of the list API, thus lowering the cost of correct SFN file identification. By 
segregating SFN files into a dedicated subdirectory, the system can maintain a cleaner and 
more organized file structure. 
 

4 



 

For e.g.: <namespace>_<table_name>_20240128T153045.ver (timestamp 
20240128T153045 represents ordinal) 

Table UUID-Based Naming (Option 3) 
The table UUID naming method utilizes the table's UUID for SFN meta files, ensuring that each 
snapshot can be uniquely identified. The table GUID remains unchanged throughout the table's 
lifetime and does not conflict even if two tables have the same name. This method is useful for 
situations like renaming, table recreation, and directory sharing. However, it necessitates file 
listing when the table's UUID is not known to the user. This could be addressed by maintaining a 
sub-folder as in Option-2. 
 
For e.g.: <table_id>_123e4567-e89b-12d3-a456-426614174000.ver 
 

Considerations 
Unique Directory per Table: In this scenario, only one table’s data and metadata files are 
present in a directory, ensuring that at most one CSID-file is present. 
Directory is reused for Table Recreation: This occurs when a table is dropped and then 
recreated in the same directory path. During this process, orphaned files from the dropped table 
may remain in the directory. 
Table Renaming: When a table undergoes a renaming operation without a change in its 
location, the table's CSID-file must still be deterministically discoverable. 
Shared Directory: In this scenario, a single directory stores files for multiple Iceberg tables. 
Each table must have its own unique CSID-file to avoid unnecessary coordination between table 
managers. 
Multi-environment: Table writers across dev, staging, and test environments may use the same 
table identifier and can lead to a risk of conflicts. 

Structure of the SFN meta file 
The SFN meta file is structured as a JSON file that encapsulates essential information to identify 
and manage the table’s current state. The JSON file includes the following key elements: 
Version: version of the SFN meta file specification 
Table Identifier: composed of the table namespace and table name 
GUID: This allows readers a way to validate that the correct table is read through table updates. 
Metadata File path: Absolute path of the snapshot metadata.  
  
Here is an example of the JSON structure for the CSID file:  
```json  
{  
"version": 1 
"table_identifier": "sales.customer",  

5 



 

"guid": "123e4567-e89b-12d3-a456-426614174000",  
"metadata_file_path": "/foo/bar/abc.json", 
"Ordinal": "20240128T153045” 
}  
``` 

 

Limitations 
Staleness: The table manager produces the CSID file in a post-commit step. As such, there 
may be a delay in the visibility of new table updates. This staleness can affect the real-time 
accuracy of data available to the readers.  

Loss of Commits: In cases where the manager fails before updating the CSID file, the new 
commit may not be visible to the reader. This could result in data inconsistencies. Although a 
periodic maintenance job could bring the CSID file to a consistent state, this is not enforced and 
relies on the robustness of the table manager.  

Incomplete Timeline: The CSID file cannot be used to track all commits on a table 
comprehensively. For example, in a high transaction scenario, the table manager may choose to 
update the CSID file only once, missing intermediate commits. This could lead to gaps in the 
commit history available to readers.  

Cost: Unless an easy file naming mechanism is adopted, readers may need to execute a list 
operation on the storage engine. This can be a costly and high-latency operation, potentially 
impacting the performance and efficiency of the system.  

 

References 
[1] Snowflake: CREATE ICEBERG TABLE 
[2] Version-hint file discussion 
[3] Spark ACL 
[4] OneLake Iceberg Support 
[5] IRC notification proposal 

6 

https://docs.snowflake.com/en/sql-reference/sql/create-iceberg-table-iceberg-files#syntax
https://github.com/apache/iceberg/pull/1465
https://www.amazon.science/publications/membrane-safe-and-performant-data-access-controls-in-apache-spark-in-the-presence-of-imperative-code
https://blog.fabric.microsoft.com/en-us/blog/bring-your-on-premises-data-to-onelake?ft=Data-engineering:category
https://www.mail-archive.com/dev@iceberg.apache.org/msg07874.html

	Adding a File System based Consistent Method to Identify Iceberg Tables’ Current Snapshot 
	Original Authors: Ashvin Agrawal, Russell Spitzer 
	Last Updated: Oct-28-2024 

	Goal 
	Use Case 
	Introduction 
	SFN Generation Options 
	Management through Catalog using notification (proposal [5]) 
	Management through the Catalog 
	Management using an external maintenance task  

	Proposal for SFN Meta Naming Options 
	Table Identifier (namespace + name) based naming (Option 1) 
	Ordinal-Based Naming (Option 2) 
	Table UUID-Based Naming (Option 3) 
	Considerations 

	Structure of the SFN meta file 
	Limitations 
	References 

