
Everscale Bug Report - Stack
Serialization
Author: Evgeniy Shishkin <evgeniy.shishkin@gmail.com>

Description

In Everscale it is possible to create big tuples with relatively little gas consumption. In our
previous bug report, we showed that printing such tuples may result in a great validator
performance degradation. This time, we found that serialization (i.e. transforming an
in-memory data structure to a series of bytes) of such objects may cause a stack overflow of
the validator's node and, hence, complete network stop.

This problem is not related to big tuples per se, but incorrect gas consumption calculation
logic in the serialization code. This erroneous logic prevents TVM from stopping execution
when gas goes out of limit. What is worse, there is a recursive call happening during the
serialization. This fact leaves open the possibility for a stack overflow.

To reproduce this bug, you have to:

1.​ Create a deep tuple (say, 15000 enclosed elements)
2.​ Create a random continuation
3.​ Put the tuple into the stack of the newly created continuation (SETCONTARGS)
4.​ Serialize the continuation (STCONT)

Now we go a bit deeper into the most interesting parts.

Tuple serialization
It is surprisingly difficult to find a place where a Tuple object located on the stack would be
serialized. However, we managed to find at least one such place. It is done in a context of
more broad Everscale-specific instruction STCONT, i.e. serialization of a continuation. To
trigger the tuple serialization, you need to put it into the continuation stack. This can be done
using the SETCONTARGS instruction.

Continuation serialization
Everscale VM has some undocumented instructions. It doesn't present both in the Durov's
whitepaper and in the C++ node code. One such instruction is STCONT, i.e. serialization of a
continuation located on a stack. To the best of our knowledge, without this instruction this
problem would not manifest itself.

Incomplete gas consumption computation logic
Consider the code fragment located here. In this block, the continuation's stack get
serialized. Authors obviously acknowledged the fact that serialization has to be properly
charged for the gas. However, the implementation lacks a gas overflow check.
The tuple serialization logic contains the same error. What is worse, it contains recursive call
here. For a big tuple, it leads to a stack overflow.

Affected components
The main origin of the problem is in the incomplete gas consumption computation logic, in all
serialization handers.

https://github.com/tonlabs/ton-labs-vm/blob/50170e72c307bbf1e9e2071fa83bcb0be4a03bb6
/src/stack/mod.rs#L358

and

https://github.com/tonlabs/ton-labs-vm/blob/50170e72c307bbf1e9e2071fa83bcb0be4a03bb6
/src/stack/continuation.rs#L142

Result of Attack
The result of the attack is a full network stop in the worst case. It is only a matter of
deploying the contract to the master chain.

Mitigation Strategies
The most easy fix would be to introduce gas overflow checks in the serialization handlers.

DREAD Score

Criteria Rational

Damage potential: 10 Full network stop will limit the ability of
users to manage their funds. Validators cut
off the election cycle lose their earning
potential and rewards as well.

Reproducibility: 10 Easy to reproduce on any - main or
development - network. Does not depend
on capabilities.

Exploitability: 10 The bug can be exploited by a simple
transaction with proper parameters

https://github.com/tonlabs/ton-labs-vm/blob/50170e72c307bbf1e9e2071fa83bcb0be4a03bb6/src/stack/continuation.rs#L180
https://github.com/tonlabs/ton-labs-vm/blob/50170e72c307bbf1e9e2071fa83bcb0be4a03bb6/src/stack/mod.rs#L394
https://github.com/tonlabs/ton-labs-vm/blob/50170e72c307bbf1e9e2071fa83bcb0be4a03bb6/src/stack/mod.rs#L401
https://github.com/tonlabs/ton-labs-vm/blob/50170e72c307bbf1e9e2071fa83bcb0be4a03bb6/src/stack/mod.rs#L358
https://github.com/tonlabs/ton-labs-vm/blob/50170e72c307bbf1e9e2071fa83bcb0be4a03bb6/src/stack/mod.rs#L358
https://github.com/tonlabs/ton-labs-vm/blob/50170e72c307bbf1e9e2071fa83bcb0be4a03bb6/src/stack/continuation.rs#L142
https://github.com/tonlabs/ton-labs-vm/blob/50170e72c307bbf1e9e2071fa83bcb0be4a03bb6/src/stack/continuation.rs#L142

Affected users: 10 All users of the network are affected.

Discoverability: 5 The in depth analysis of the VM code has to
be carried out in order to find this issue. Not
that easy.

Total: (10 + 10 + 10 + 10 + 5)/5 = 9 Critical

Steps to reproduce
The Fift script with the code triggering the problematic code is put here:
https://gist.github.com/unboxedtype/b90ac2ce4ce79e9f4245d0f610a1e3a0

You may also need this library:
https://gist.github.com/unboxedtype/3546a5a5e3562fb2c344cc082a2c201b

https://gist.github.com/unboxedtype/b90ac2ce4ce79e9f4245d0f610a1e3a0
https://gist.github.com/unboxedtype/3546a5a5e3562fb2c344cc082a2c201b

	Everscale Bug Report - Stack Serialization
	Description
	Tuple serialization
	Continuation serialization
	Incomplete gas consumption computation logic

	Affected components
	Result of Attack
	Mitigation Strategies
	DREAD Score
	Steps to reproduce

