Submitter's telephone number and email address: (818) 624-5068, quesadakaitlyn@gmail.com; (704)-352-5563, briancarter0003@gmail.com

Presenter's name: Kaitlyn Quesada, Brian Carter

Society, Section or program to which you are submitting your presentation for review:

Type of presentation (ORAL or POSTER): POSTER

Is the presenter a student? (STUDENT or NOT A STUDENT): STUDENT

Special Equipment needs (other than standard computer equipment and powerpoint): NONE

Stemness of Bone Marrow Stromal Cells for Regenerative Properties, KAITLYN QUESADA^{1*}, BRIAN CARTER^{1*}, HIROKO OKAWA², and ICHIRO NISHIMURA² (¹UCLA Pre-College Science Education Program, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095, quesadakaitlyn@gmail.com, briancarter0003@gmail.com; ²UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095, hiroko.okawa01@gmail.com, inishimura@dentistry.ucla.edu).

Stem cells are known for having the ability to self-renew and differentiate into various cell types, allowing them to regenerate tissues and replace damaged cells. Previous research was conducted regarding the effect on regeneration and stemness qualities in Bone Marrow Stromal Cells (BMSC) derived from NPAS2 knockout mice. In NPAS2 knockout mice, the NPAS2 gene, a component of the Circadian Clock, is removed. **Objective:** To further investigate stemness and osteogenic differentiation abilities of BMSC in NPAS2 knockout. **Methods:** WST-1 was used to assess proliferation and viability of cells in wild type and NPAS2 K/O mice. RT-PCR was used to find which stem cell markers were expressed in wild type and NPAS2 K/O mice BMSC. ALP staining was used for osteogenic differentiation potential in both wild type and NPAS2 K/O mice BMSC. **Results:** Stem cell markers NANOG and KLF4 were expressed more within NPAS2 K/O mice BMSC than wild type mice BMSC. NPAS2 K/O mice BMSC. **Discussion:** After reviewing multiple experiments dealing with the suppression and knockout of NPAS2, reports indicate results that support our data. An article that claims "silencing NPAS2 expression [within tumor tissue] could promote cell proliferation, cell invasion and increase the wound healing ability (Xue X.)" **Conclusion:** We conclude that the lack of NPAS2 is able to keep FBMSC in a more stem-like state and rapidly increases recovery speeds of wounds on mice femur bone tissues.

Dentistry

UCLA Stemness of Bone Marrrow Stromal Cells for Regenerative Properties

Kaitlyn Quesada, Brian Carter, Hiroko Okawa, and Ichiro Nishimura Weintraub Center for Reconstructive Biotechnology UCLA Pre-College Science Education Program UCLA School of Dentistry

Introduction

Introduction

Introduction

Stem cells are known for having the ability to self-enew and differentiale into various cell lyse, which allow them to regenerate itssues and replace defective or damaged cells. Previous research was conducted regarding the effect or regeneration and sciences qualities in Boow Marrow Stream!

Step of the control of the co

- Intelligible processor scores, passes or some specific type is more cells regenerate to form new cells and tissues; one specific type is Bone Aharow Stem Cells

 Bone Aharow Stem Cells

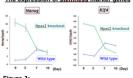
 NPAS2 is a protein is which is a component of the Circadian clock gene

 Hypothesis

 NPAS2 knockdown BMSCs have high stemness and
 osteogenic differentiation ability.

- Measure stem cell marker gene expression using RT-PCR
- PCR

 2. Measure cell proliferation using WST-1


 3. Observe osteogenic differentiation using ALP staining

Materials & Methods

- Femur Bone Marrow Stromal Cells from B6 mice Medium (DMEM+10%FBS+1%Penicillin Medium) QIAGEN RNeasy Mini Kit
- Gene Markers for real-time RT-PCR WST-1
- ALP staining agent

Results

Figures 1 and 2: The expression of stemness marker genes

Cell proliferation of BMSC (WST-1 assay)

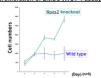
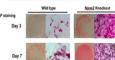



Figure 4: Osteogenic differentiation of Npas2 Knockout BMSC

Discussion

- By knocking out NPAS2,

 There was a high expression of Nanog and KLF4

 More gene markers being expressed correlates
 directly to higher stemness levels
 Cells proliferated at a faster rate and produced faster
 There was more bone formation taking place

Conclusion

To conclude, our hypothesis proved to be true as the cells showed many characteristics of maintaining high stemless levels, such as more proliferation and bone formation, in our results when having NPAS2 knocked down.

Future Studies

Further test stem cell markers such as STRO-1 which can identify a cell surface antigen expressed by stromal elements in human bone marrow.

References

Aghaloo, T L et al. "Osteogenic potential of mandibular vs. long-bone marrow stromal cells" Journal of dental research vol. 89,11 (2010): 1293-8.

X. Luan, Brodle Laboratory for Craniofacial Genetics, Departments of Oral Biology and Orthodontics, UIC College of Dentistry, The University of Illinois at Chicago, 801 South Paulina, M/C 841, Chicago, IL 60612, USA

- Dr. Ichiro Nishimura
 Dr. Hiroko Okawa
 Dr. Andre Barkhordarian
 Dr. Carl Maida
 Aaron Shearer

- Aaron Shearer
 Project Grad and College Bound

Acknowledgements