
 CSE 344 Section 4 Worksheet

CREATE TABLE Class (
 dept VARCHAR(50),
 number INT,
 title VARCHAR(50),
 PRIMARY KEY (dept, number));

CREATE TABLE Instructor (
 username VARCHAR(50) PRIMARY KEY,
 fname VARCHAR(50),
 lname VARCHAR(50),
 started_on CHAR(10));

CREATE TABLE Teaches(
 username VARCHAR(50) REFERENCES Instructor,
 dept VARCHAR(50),
 number INT,
 FOREIGN KEY (dept, number) REFERENCES Class);

a.​ How many classes are currently being taught by at least one instructor?

By the nature of our data, we know that any class that appears in Teaches must be
taught by at least 1 teacher. Thus, if we categorize the tuples in Teaches by dept and
coursenum (the primary key), we can get our answer by counting the number of groups.
The sticking point of this query is how to count the number of groups. The easy solution
is to wrap the grouping query in a count(*) query.

SELECT COUNT(*)

FROM (SELECT DISTINCT dept, coursenum
FROM Teaches);

b.​ Return the first name and last name of the instructors who teach the most number of
classes. If there are multiple instructors, list all of them.

This is another example of the witnessing problem. There are multiple approaches -
see below.

​
​ SOLUTION 1:

​ WITH (

 SELECT username, COUNT(*) AS count​
 FROM Teaches​
 GROUP BY username​
​) AS ClassCounts​
 SELECT I.fname, I.lname​
 FROM ClassCounts AS C1, ClassCounts AS C2, Instructor AS I​
 WHERE C1.username = I.username​
 GROUP BY I.username, I.fname, I.lname, C1.count​
 HAVING C1.count = MAX(C2.count);​

SOLUTION 2:
​
 WITH (

 SELECT username, COUNT(*) AS count​
 FROM Teaches​
 GROUP BY username​
​) AS ClassCounts,​
 (​
 SELECT MAX(count) AS max​
 FROM ClassCounts​
) AS MaxCounts​
 SELECT I.fname, I.lname​
 FROM ClassCounts AS C, MaxCounts AS M, Instructor AS I​
 WHERE C.username = I.username AND C.count = M.max;

SOLUTION 3:
​
 SELECT I.fname, I.lname​
 FROM Instructor AS I, Teaches AS T​
 WHERE I.username = T.username​
 GROUP BY I.username, I.fname, I.lname​
 HAVING COUNT(*) >= ALL (​
 SELECT COUNT(*)​
 FROM Teaches​
 GROUP BY username
);

CREATE TABLE Members (
 member_id INT PRIMARY KEY,
 name VARCHAR(100) NOT NULL,
 city VARCHAR(100),
 join_date DATE);

CREATE TABLE Fish (
 fish_id INT PRIMARY KEY,
 species VARCHAR(100) NOT NULL,
 water_type VARCHAR(20), -- e.g. 'Freshwater', 'Saltwater'
 adult_size INT); -- average adult size (e.g. length in cm)

CREATE TABLE Ownership (
 member_id ​ INT REFERENCES Members,
 fish_id ​ INT REFERENCES Fish,
 date_acquired​ DATE,
 PRIMARY KEY(member_id, fish_id));

There are often multiple ways to solve problems like these!

a.​ Find all fish whose adult_size is bigger than that of any fish owned by Carol (i.e.
bigger than her smallest fish). Output their fish_id and adult_size.

SELECT f.fish_id, f.adult_size
FROM Fish f
WHERE f.adult_size > ANY (
 SELECT f2.adult_size
 FROM Ownership o2
 JOIN Fish f2 ON o2.fish_id = f2.fish_id
 JOIN Members mc ON o2.member_id = mc.member_id
 WHERE mc.name = 'Carol'
);

NOTE: SQLite does not support the ANY keyword. Instead, you can usually slightly
modify your query:

SELECT f.fish_id, f.adult_size
FROM Fish f
WHERE f.adult_size > (

SELECT MIN(f2.adult_size)
FROM Ownership o2
JOIN Fish f2 ON o2.fish_id = f2.fish_id
JOIN Members mc ON o2.member_id = mc.member_id
WHERE mc.name = 'Carol'

);

b.​ Find all members who own every species of freshwater fish, and output their names

SELECT m.name
FROM Members m
WHERE NOT EXISTS (
 SELECT 1
 FROM Fish f
 WHERE f.water_type = 'Freshwater'
 AND f.fish_id NOT IN (
 SELECT o.fish_id
 FROM Ownership o
 WHERE o.member_id = m.member_id
)
);

c.​ Find all rare fish (we define rare fish as those owned either by only 1 member or by no
members). Output Challenge: can you solve this both using and without using
subqueries?

With subqueries:

SELECT f.fish_id, f.species
FROM Fish f
WHERE f.fish_id IN (
 SELECT o.fish_id
 FROM Ownership o
 GROUP BY o.fish_id
 HAVING COUNT(o.member_id) = 1
)
OR f.fish_id NOT IN (
 SELECT DISTINCT o.fish_id FROM Ownership o
);

Without subqueries:

SELECT f.fish_id, f.species
FROM Fish f
LEFT JOIN Ownership o ON f.fish_id = o.fish_id
GROUP BY f.fish_id
HAVING COUNT(o.member_id) = 1 OR COUNT(o.member_id) = 0;

	 CSE 344 Section 4 Worksheet

