

Why it’s a Bad Pattern
1.​ Increased Cognitive Load

○​ When code lacks proper documentation, it becomes difficult
for all developers (including future-you) to understand the logic
and purpose behind decisions, big and small.

2.​ Poor Maintainability
○​ If code logic and purpose remain a challenge, developers are

less likely to implement regular maintenance cadences.
○​ Without regular maintenance cadences, your code is at risk of

becoming esoteric knowledge at best, and losing overall
functionality and value at worst.

3.​ Increased Time Spent on Debugging
○​ If code logic and purpose remain a challenge, developers are

less likely to effectively identify, respond to, and resolve bugs.
○​ Not only do bugs become more expensive, but one risks not

resolving them at all.
○​ No effective debugging methodology risks destructive

consequences and accelerates code degradation.
4.​ Overall Team Frustration with Company-Wide Consequences

○​ Poor documentation practice puts the team at risk of
perpetuating engineer toil that can ripple across additional
team processes, possibly creating prolonged and unproductive
team ceremonies due to unknowns and misalignment.

○​ Documentation can be a tool in which developers effectively
share knowledge, but with poor documentation practice, we all
risk perpetuating bus problems, difficult onboarding
processes, and unnecessarily complex shipping.

https://en.wikipedia.org/wiki/Bus_factor#:~:text=It%20is%20also%20known%20as,replaceable%20at%20an%20insurable%20cost).

Examples of the Problem

Popular documentation strategies include inline multi-line remarks that
risk adding noise, not context. For example, using Javadoc comments can
be an effective strategy to ease cognitive load, but if you’re not using this
real estate to provide meaningful information, you’re just creating noise.
Using the Javadoc structure to produce a parameter list without
description ends up looking like unintended code duplication.

/**​
* Method to create a subscription invoice. This method calls another ​
* service and records the invoice generation to table_invoice_requests ​
* reporting in that service.​
*​
* @param customerId​
* @param invoiceDate​
* @param startDate​
* @param endDate​
* @param productId​
* @param amount​
* @param description​
* @param uniqueId​
* @return response message that is displayed to the user​
*/​
​
public String createSubscriptionInvoice (​
 final int customerId,​
 final LocalDate invoiceDate,​
 final LocalDate startDate,​
 final LocalDate endDate,​
 final int productId,​
 final double amount,​
 final String description,​
 final String uniqueId) {

Beware of orphaned TODO tasks. Inline commenting is only encouraged
for areas involving edge case handling, short-span fixes, product quirks
and magic numbers or constants that require a quick explanation.​

// TODO: remove this​

https://en.wikipedia.org/wiki/Javadoc
https://www.jetbrains.com/help/idea/using-todo.html#

// TODO: I should not set this here, like this. Should just return the ID.​
​
// TODO server side validation and rerendering is a little odd, consider

JavaScript front-end validation

​
These TODO tasks are marginally more valuable than the first. We have
some direction, but no meaningful explanation as to why the current
implementation is not preferred. We’ve made the effort to create a TODO
task without successfully passing responsibility. The codebase is now
littered with orphaned TODO tasks, creating unnecessary IDE warning
noise, making identifying and solving bugs harder.​
​
Recent outdated service documentation recently led to an internal event
(<Jira ticket link here>), which introduced breaking changes to 162+ projects
(see this <internal event report> here).​
​

Best Pattern(s)

1.​ Write for future-you, but not only future-you.
○​ Aim away from implicit knowledge and be as literal, explicit as

possible.
○​ Disambiguate as much as you can while writing for the

engineer that knows nothing, which will be future-you, because
future-you is not going to remember.

○​ Even if future-you remembers, stop putting pressure on
yourself to become a code librarian, so that you can allot your
time to more complex problems.

2.​ Be decisive, don’t leave strays.
○​ Write kinetically. Write in a way that shares valuable

information and passes responsibility. Meaningful comments
document the why, not just the what.

○​ If you must create a TODO task, use this opportunity to be
descriptive in a way that transfers knowledge because
“anything you do in a team should follow the needs of that
team” (Martin Fowler, Code As Documentation).

○​ A good approach may include adopting a team standard in
which a Jira ticket is required in any, and or all TODO

https://martinfowler.com/bliki/CodeAsDocumentation.html#:~:text=anything%20you%20do%20in%20a%20team%20should%20follow%20the%20needs%20of%20that%20team

comments. Consider adding a code review checklist item to
examine any comments that could or should be updated.

○​ A better approach might be to never leave TODO tasks at all.
Either complete the task or finalize the decision not to. If the
scope of the change is too much for an immediate resolution, a
ticket is a better way to share information and manage change,
rather than leave stray comments in the code. A ticket can
centralize context, while comments often require imperfect
cycles of context reinforcement - where one is forced to learn
and relearn context.

3.​ Aim to be concise
○​ Good code should document itself, but that becomes a

challenge when you’re working with legacy systems that require
explanation for complex business processes or distinctive legal
constraints. If possible, suggest refactoring to make the code
itself more clear to eliminate the need for inline comments as
documentation. It is often enough to extract a method with a
meaningful name to expose the information you might
otherwise put into a comment.

○​ After considering refactoring, if you think inline comments are
necessary, focus on the why and allow the code to speak for
itself to explain the how. If staying concise is a challenge,
consider a different approach to documenting the information.
Could this information live among your team’s internal
documentation, repository README, or external service
documentation? Inline comments with too much information
can very easily go from helpful to not.

○​ Finding the right balance just takes regular maintenance
cadences. Aim to include necessary refactoring, read good
docs, have others review your docs, remain open to feedback
that improves user-friendliness and practicality.

4.​ Adopt tools that help you build a solid documentation practice
○​ Harness the power of your IDE and don’t ignore the warnings.
○​ Use current recommendations to support larger initiatives
○​ Leave code better than you found it

Examples of the Best Pattern(s)
If you’re writing a repository README, aim to be comprehensive but not
exhaustive. Strive to create a user-friendly onboarding experience. Include

https://gist.github.com/wojteklu/73c6914cc446146b8b533c0988cf8d29

an introduction to the project with visuals and text. Offer clarity around
various entry points such as quickly contributing code and how one might
respond to an outage. Seek to produce content that remains practical and
lean circumstantially agnostic. Ensure that if you’re new to the project, this
content is a great place to start and that if you’re a site reliability engineer
responding to an issue, this is also a great place to start.
​
Sweat the small stuff and acknowledge system limits. Notice that the
documentation below offers meaningful direction because it is not
unnecessarily abstract and is descriptive of the limitations. Something too
concise such as add the Jenkins user would not tell us much.

You will need to type "Jenkins" into the search and scroll down to

the "Users" section of the drop down results where Jenkins will pop

up. Even though Jenkins is dead, we still require this. After adding

these, the option will read 1 role, 1 user. You might also see some

extra users like the Timebound Merger and that is fine.

Summary
1.​ Write for the engineer who has no context, which will include

future-you, because future-you is not going to remember.
2.​ Code can be self-documenting, but it probably isn’t. Discuss team

strategies to eliminate the need for inline comments as
documentation, but as long as it exists, encourage best practices.

3.​ Write meaningful comments and project documentation, regularly
update it, and solicit feedback for improvements.

4.​ You don’t need to reinvent the wheel
○​ Seek out current best practices guidelines and documentation

recommendations from others
○​ Experiment with IDE code inspection tools
○​ Read good docs and share good docs

	Why it’s a Bad Pattern
	Examples of the Problem
	Popular documentation strategies include inline multi-line remarks that risk adding noise, not context. For example, using Javadoc comments can be an effective strategy to ease cognitive load, but if you’re not using this real estate to provide meaningful information, you’re just creating noise. Using the Javadoc structure to produce a parameter list without description ends up looking like unintended code duplication.
	
	​These TODO tasks are marginally more valuable than the first. We have some direction, but no meaningful explanation as to why the current implementation is not preferred. We’ve made the effort to create a TODO task without successfully passing responsibility. The codebase is now littered with orphaned TODO tasks, creating unnecessary IDE warning noise, making identifying and solving bugs harder.​​Recent outdated service documentation recently led to an internal event (<Jira ticket link here>), which introduced breaking changes to 162+ projects (see this <internal event report> here).​​

	Best Pattern(s)
	1.​Write for future-you, but not only future-you.
	

	Examples of the Best Pattern(s)
	Summary

