
Notes on "Mathematics" from A Philosopher Looks at Science by John G. Kemeny 
 
Introduction: 
Most high school students never really get the chance to consider the operations of 
mathematics, but are simply bribed into learning mathematics on the basis of its 
practical applications. Kemeny proposes to start from scratch 
 
What Mathematics is not: 
Mathematics is not self-evident, something every student suspects when their teacher 
tried to convince them that is was self-evident that the base angles of an isosceles 
triangle are equal. 
 
As an example of this problem, consider the following famous statement: 
"Every even number can be written as the sum of two prime numbers." [A prime 
number is a number not evenly divided by any number with the exception of 1 and 
itself] 
 
So, for example 2= 1 + 1, 4 = 1 + 3, etc.  But is this true for all prime numbers? Well, H. 
Goldback presented this proposition (hunch) years ago, and it has not been proven. 
MATHEMATICAL PROPOSITIONS ARE NOT SELF-EVIDENT 
 
Mathematics is also not based upon observation. What kinds of mathematical 
propositions are there? Well there are four possible combinations 
Analytic apriori: need only consider the meanings of the terms to determine truth or 
falsity 
Analytic aposteriori: none of these types, because analytic statements do not rest upon 
experience 
Synthetic apriori:  these are the Kantian categories, and assume only one possible view 
of the universe, so they also don't exist 
Synthetic aposteriori: factual statements whose truth can only be decided on the basis 
of observation 
 
Let us take the last view, that propositions depend upon factual observation, as JS Mill 
argued. 
 
G.S. Hempel points out that if wants to test 3 + 2 = 5, we could put three microbes on a 
slide, and then add two.  However, if we then found six microbes, we would not 
consider this a refutation of the mathematical proposition. 
 
How about the logical proposition a = b and b = c, therefore a = c? If we took one shade 
of blue, then another just like it, and a third just like the second, and then noticed a 
difference between one and three, we would conclude that we were wrong about the 
differences in color. In both examples, we don't rely upon experience to give us the 
answer. 
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The upshot of this is that mathematical statements are analytic apriori. Since we have 
learned this tells us nothing about experience, why bother with them? In order to find 
out, let us now ask what mathematics is. 
 
 
What is Mathematics?: 
Our starting point should be our last effort to establish certainty, logic: what is the 
relationship between mathematics and logic? And this inevitably leads us to the issue of 
"form." 
 
Let us start with an example of form, translating "all bald men are bald" into "all ___ 
…… are ____.  In this case the lines are used to indicate the same word in the premise 
and conclusion. The virtue of the statement is that this form can be applied to any sort 
of proposition and it will be true. The strength of logic is to find results with 
far-reaching applications. 
 
Now, as we discovered in logic, it is easier to substitute the blanks with letters, or 
"variables." It does not matter what we replace the variables with, the truth remains the 
same.  However, logic cannot function simply by studying form, since it needs to 
express the relationship of the variables through something called a "constants."  "All,” 
“are,” “if…then,” are examples of logical constants, and are different from the 
subject-matter constants or variables. 
 
Logic then studies the meaning of logical constants and the way they enter into forms of 
propositions. The advantage of logic is that it is applicable to any subject matter, 
because its form is general. While it is more work to examine things in such a general 
fashion, in the long run it saves time, since one general argument can replace infinitely 
many specific arguments. 
 
So, what is the relationship of logic to mathematics? According to Russell, "logic is the 
youth of mathematics, and mathematics is the adulthood of logic." Let us turn to the 
issue of the identity of the two fields, which was done at the turn of the century. 
Mathematics is founded on the properties of integers (whole numbers); from them the 
rest of mathematics is deducible by purely logical arguments. 
 
In the late 19th century, Guiseppe Peano tried to show that the properties of all integers 
follow from five simple postulates, that is to say, purely in accordance with the rules of 
logic. The program was incomplete. In the meantime, Mathematical logic (logic 
strengthened by the use of symbolic methods) was developed. In Principia Mathematica 
Russell and Whitehead showed that Peano's concepts could be defined in terms of 
logical constants and their properties demonstrated by pure logic. [It did involve two 
controversial new axioms, infinity and choice] 
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What did all this prove? That mathematics is a study of the form of arguments and is 
the most general branch of knowledge. It is, however, entirely devoid of subject matter 
(this task is left to subject matter constants [variables] which are outside the realm of 
logic.)  
 
Now we may again ask: what good is mathematics? Well, if you take a simple example 
the reply may be "not much." It shows that 365-1= 364 implies "-1"  means going from a 
number to the previous one," "=" means being the same number, and hence means the 
proposition asserts that the number 364 is the number right before 365. All this is true 
because this is how we named our numbers. 
 
However consider the following: "every number can be written as a product of primes, 
and in a unique way," or "the number of the primes  up to n divided by n and multiplied 
by natural logarithm of n tends to 1," it becomes clear sometimes the  meanings are far 
from obvious, and it can take centuries to prove them 
 
Here is the "so what" in regard to mathematics: while it brings us nothing new, it brings 
us facts that are new to us, that we did not realized that we possessed. In a mathematical 
proof, we start with a few propositions which for some reason we accept, and then we 
come up with entirely new propositions which we must also accept, because they are 
contained in what we have said before. And, thanks to the complete generality of 
mathematics, it can do this for any subject whatsoever. 
 
The Relation of Mathematics to Science 
The ideal branch to witness mathematics in action is geometry. While it dates back to 
the Egyptians, we know it from Euclid, who laid down a set of axioms  from which all 
true geometrical propositions followed by pure logic. We now know Euclid fell short on 
two accounts 1) it was redundant, containing definitions which served no purpose; 2) it 
made some hidden assumptions that did not follow from the axioms. These were 
repaired in this century the German mathematician David Hilbert, whose Plane 
Geometry has as undefined terms "point," line, "is on the line," "lies between the points," 
"are at equal distances," and "are equal angles. These are used to define all other terms, 
and from these Hilbert derived a list of axioms. 
 
Why not prove the axioms too? Well mathematicians have tried, but found that you 
can't prove something from nothing, that you always must have a starting point. Euclid 
found out as much when he attempted to claim as self-evident the axiom that "given a 
line, and a point not on the line, there is just one one line through the point parallel to 
the line. There was of course no practical test to check whether the two lines never met. 
 
For two thousand years embarassed mathematicians tried various remedies, and 
ultimately they decided that this was not an axiom, but a theorem. Geometry must 
follow from self-evident axioms and if this proposition was not self-evident, then it 
must follow from the remaining self-evident axioms, which it did not. 
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The story took a dramatic turn around the beginning of the 18th century, when an 
ingenious approach  was suggested, that of indirect proof: assume that the parallel 
axiom does not follow from the others--then we will not get an contradiction if we deny 
it. Let us assume that we can draw more than one parallel to a given line through a 
given point, and show that this leads to an absurdity." The problem was they detected 
no absurdity. 
 
In fact, the absurdity was never discovered. However, simultaneously John Bolyai and 
N.I. Lobachevski, failing to discover the contradiction, succeeded in drawing the 
conclusion that more than one type of geometry exists, work which was extended by 
G.F. Gauss and G.F.B. Riemann. They showed that there was a third type of geometry, as 
well as an infinite number of "mixed" geometries. 
 
The problem that plagues the attempt of mathematics to establish in a purely logical 
fashion all of its axioms is quite simply that things such as Hilbert's "undefined points" 
do not belong to the sphere of mathematics or logic.  "Point" or "line" means nothing to 
the geometer, and you could well substitute "dog" for "point," "cat" for line, "dog bites 
cat" for points on the line and the theorems will follow just as consistently. Of course 
this is not what mathematicians do. They deal strictly with the skeletal form of the 
relationship or "x bears a relation R to  y" or " xRy." So, no matter what these subject 
matter constants mean (and they don't mean anything until we give them a meaning) 
the axioms still follow from the theorems by virtue of their form. Therefore, if we can 
find any meaning at all for these six entities which make the axioms true, the the 
theorems will be true under the same interpretation. This shows both the strength and 
weakness of mathematics. It can prove perfectly general statements true about all 
possible applications. On the other hand, it cannot prove the truth of any one statement 
in an application--that is left to science. 
 

The Three Geometries 
First Sytematic Treatment by​ Bolyai & Lobachevski​ Euclid​​ Reimann 
 
Sum of the angles of a triangle​ > 180 ​ ​ ​ ​ 180​ ​ <180  
 
The Space Curves​ ​ ​ out​ ​ ​ ​ doesn't​ in 
 
Volumes Increase​ ​ ​ rapidly​ ​ ​ normally​ slowly 
​ ​ ​ ​ ​ ​ ​ ​ ​ Cube of  
​ ​ ​ ​ ​ ​ ​ ​ ​ radius 
To a given line, through a​ ​ infinite​ ​ ​ 1​ ​ 0 
Point, the # of parallels 
 
Such a universe would be​ ​ infinite​ ​ ​ infinite​ finite 
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Behaves like a​ ​ ​ saddle​​ ​ ​ plane​ ​ sphere 
 
 
Ultimately, all geometry tells the scientist is: "Find me x's, y's, R's which make these 
axioms true, and I will present you with an infinity of true statemens--all my theorems. 
An immediate consquence of this is that mathematics can tell you nothing about the 
truth of your axioms; as a matter of fact, it is foolish to ask one way or the other the 
axioms are true. It all depends upon what x, y, and R are.  If it is dog bites cat, then it is 
false, but if it is, for example men liking women, it would be true. 
 
The bottom line is that statements of Mathematics are only forms and their truth can 
only be considered if we fill in the blanks, giving them and interpretation. [This is the 
distinction between pure and applied mathematics] 
 
The questions occurs "How can you say that geometrical axioms are only forms, neither 
true nor false, when science makes such frequent use of them? The answer is that when 
science uses them, they automatically fill in the blanks: they have very definite 
meanings in mind for each of the six terms. But this is a factual question which 
mathematics cannot answer. The mathematician can only say that if the universe is such 
that the axioms (so interpreted) happen to be true, then all the theorems (similarly 
interpreted) will also be  true. 
 
In respect to geometry, the answer about the nature of the universe was given by 
Einstein, a physicist, who argued the universe was a mixture of  different types, varying 
from place to place, according to the distribution of matter in it.  Since we currently 
believe that the universe as a whole is finite, though endless, curving back on itself, it is 
apparent that is not Euclidean.  Speaking of the relationship of science to math, Einstein 
remarked "As far as the laws of mathematics refer to reality, they are not certain, and as 
far as they are certain, they do not refer to reality.” 
 
Then why is mathematics so vital for science? Because it is the ideal language in which 
to formulate our scientific theories, and it tells us just what our theories imply. 
Contrary to popular belief, we rarely test a scientific theory directly. Rather, we test its 
logical or mathematical consquences. In the case of Euclid parallel axiom, there is no 
method for testing it directly. However, one of the consequence this axiom along with 
the others is that the sum of the angles of a triangle is 180 degrees. In the other two 
types of geometry we get sums of more or less than 180 degrees. This can be tested. The 
catch in comparing these forms of geometry is the real world problem of scale. For small 
triangles with sides no more than a few billion miles, the difference between the three is 
neglible, and so Euclidean geometry in most cases suffices. However, on a celestial 
scale, it would not yield accurate results. 
 
This can be more clearly seen in the formula for volumes. For Euclid volume increases 
as the cube of the distance. In Reimann geometry this happens more slowly, while in 
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Bolyai and Lobachevski's geometry it increases more rapidly. Applying this, our present 
observations indicate that the number of the nebulae (large group of stars) increases 
more slowly that the cube of the distance, thus--asssuming they are evenly distributed 
(which we do)--it seems as though the universe curves in. However, recent date casts 
doubt on this conclusion. If this is false, we search for another mathematical 
formulation to describe the phenomena. 
 
Pure vs. Applied Mathematics: 
In order to understand how mathematics itself operates, let us construct a simple 
mathematical system. We will begin by stating it in its pure form—with just the 
variables—and then—to make it easier to follow—we will supply subject matter to the 
axioms.  
 
Axiom 1: There is an x such that no other x bears the relation R to it 
Axiom 2: No x has more than one x bearing the relation R to it 
Axiom 3: Each x bears the relation R to just one other x, and never bears this relationship to itself 
 
Now that we have stated the system in its pure form, let us interpret the x’s as dogs and 
the relation R as biting. 
 
Axiom 1’: There is a dog who is not bitten 
Axiom 2’: No dog gets bitten by more than 1 dog 
Axiom 3’: Each dog bites one other dog, but never bites itself 
 
It is clear that these axioms are not in fact true: the second is false and probably the first 
part of Axiom 3’. But the mathematician does not care about this; he is only claiming 
that if the axioms are true, then certain other facts will also follow. Let us now derive one 
consequence from this mathematical system, using the above interpretation to make it 
easier to follow. 
 
Theorem: There are infinitely many dogs 
Proof: Using the indirect method, we can assume that there are a finite number of dogs 
in order to get a contradiction that proves the theorem (there are only two options—finite 
or infinite). 
1) From Axiom 1’ we know that there is a dog who is not bitten (1st dog) 
2) From Axiom3’ we know that the 1st dog bites another dog, which we can call the 2nd 
dog, and then he bites the 3rd dog, and so on.  
3) Now let us consider the last dog: whom does it bite? It must bite some other dog 
(Axiom 3’), he can’t bite himself (Axiom 3’, second part), so it must bite an earlier dog. 
However, it can’t be the 1st dog (Axiom 1’) and all the other dogs on the list got bitten by 
the dog before them, and hence they can’t be bitten by the last dog (Axiom 2’). 
Conclusion: there is no dog for the last dog to bite, which contradicts Axiom 3’. Thus 
there must be infinitely many dogs. 
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Now this is a perfectly rigorous mathematical proof, an excellent example of a theorem 
which, while it contains nothing new, nevertheless is capable of furnishing us with 
information we previously did not have. For example, if we know that there are only a 
finite number of dogs in the world, we can and must reject some of the axioms. Does 
this make the axioms useless? No, for there could be entirely different interpretations 
which make the axioms true. For Example 
 
Axiom 1”: There is a year A.D. which is not preceded by any other year A.D. 
Axiom 2”: No year A.D. is preceded by more than one such year 
Axiom 3”: Each year A.D. precedes one other such year, but never precedes itself 
​
These are clearly true: the 1st Axiom states the existence of the year 1 A.D., the 2nd 
Axiom that there is always at most one previous year, and the 3rd that there is always a 
next year. Since all of the axioms so interpreted are true, all theorems so interpreted 
must be true. From this we learn that it is true that time is endless, which is also true. 
 
This approach not only shows how mathematical systems operate to prove things, it 
clearly shows the difference between pure and applied mathematics, a very important 
distinction in mathematics. Pure mathematics states that any entities x and relation R 
which happen to satisfy the three axioms must also satisfy the theorems. It says nothing 
about what x and R are, and nothing about the truth of the axioms, which are so far only 
forms and hence cannot be said to be true or false. We pass to applied mathematics 
when we interpret the variables, by stating what x and R are. Then it becomes a matter 
of fact whether the axioms are true, and the problem is taken out of the hands of pure 
mathematics and put in the hands of science.  
 
Applied mathematics belongs to science, and this distinction provides the final answer 
as to the status of mathematical propositions. Mathematical propositions are analytic 
apriori, while the applied mathematical propositions of science are in fact synthetic 
aposterior 
 
To put this another way, the x’s, y’s, and R’s in mathematics are undefined: they can be 
used in turn to define other words, but they form part of the basic vocabulary which is 
undefined. For example, in Geometry angles are defined in terms of lines, but the lines 
are never defined explicitly. However, while we don’t define them, we do offer an implicit 
definition of lines, by stating that they are the kinds of things that have the properties 
stated in the three axioms, to use the example above. Now this “relationship” is of 
interest to a scientist, for when he wants to examine some phenomenon, he looks for a 
mathematical systems whose axioms and terms have the sort of relationship as that 
found in the subject matter which he is studying. So, if a scientist has some entities that 
he or she wants to study, together with the relationships that are found between the 
entities, he searches pure mathematics for a system that displays this same 
relationship. This is called “forming a theory.” 
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The discussion of forming a theory not only distinguishes between pure and applied 
mathematics, it also shows why pure mathematics is of vital importance. One never 
knows what mathematical systems will ultimately turn out to be useful. For example, the 
alternate Geometries described earlier were only “applied” much later, to meet the new 
requirements of our views of the universe set forth by the General Theory of Relativity. 
 
How does science “interpret” mathematical propositions? A scientist takes a certain 
mathematical propositions and substitutes for the variable certain constants, expressing 
concepts that can be directly observed or measured. In this manner they take mere 
forms and, by filling in the blanks, turn them into statements of facts that he or she can 
check. For example, if we interpret the geometrical axiom that two points determine a 
line by the Euclidean interpretation, we get the factual statement that there is just one 
possible light path through any two points in space. That is open to scientific 
experimentation. 
 
Can All Sciences Use Mathematics? 
In fact, all sciences must use mathematics. When scientists state theories, they are 
practicing mathematics. In essence a scientist chooses a mathematical system with the 
proper relationship between the variables, and replaces the blanks or variables with the 
subject matter.  
 
Take as an example, a scientific theory that does not seem to be explicitly 
mathematical, such as the biological theory that the development of the individual in the 
early stage mirrors the development of the race. We would begin by arranging both 
embryos and the human race into “stages”, and therefore get two sets of series. We 
would then state that the stages in one series correspond to the stages in the other in 
such a way that wherever one of these properties shows up in the embryo, the same 
property showed up in the race at the corresponding stage. Mathematically speaking, 
we have x’s (stages of embryos) y’s (stages of the race) a relation R between them of 
correspondence, and certain properties in each stage that can be investigated. 
 
How would we solve this mathematical problem? We would first have two statements 
that the x’s and y’s form two series. This would give us, for each series, axioms like 
those used in the examples above. Then we would have to state that R is a 
correspondence, for axioms, the axioms for which are well known in mathematics, and 
that the properties always belong to the corresponding stages. This what the 
mathematician means when he or she says that they have two isomorphic series 
(isomorphic with respect to the given properties) The study of isomorphism belongs to 
the area of mathematics called Topology, one of the many branches of mathematics that 
does not use numbers. 
 
In the example above, we see that all of science uses mathematics, and often it borrows 
from pure mathematics for its tools. The development of scientific theory depends upon 
the development of mathematics for its ability to analyze the world. Mathematics then is 
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the irreplaceable language of science, even though it by itself never provides any new 
information. Yet it must be used constantly for us to realize what we already have. It 
never ceases to amaze us that its seemingly simple statements have consequences 
that we have never dreamed of. 
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