
​ ​

UNITE ON WHEELS
A Car Pooling Platform

Software
Requirements
Specification

0.1

30-05-2020

Adarsh Baghel
Ruchir Mehta

Namani Sreeharsh
Shaikh Ubaid

Prepared for
CS 258 Software Engineering

Spring 2019

 ​

​ ​

Revision History

Date Description Author Comments

20-2-2020 Version-1.0.0 A-R-H-U UI design Implementation

15-3-2020 Version-1.2.0 A-R-H-U UI Improvements

20-5-2020 Version-2.0.0 A-R-H-U Backend Implementation

29-5-2020 Version-2.2.0 A-R-H-U Combining UI and Backend

Document Approval

The following Software Requirements Specification has been accepted and approved by the
following:

Signature Printed Name Title Date

​ ​ ​ ​ ​

 ​

​ ​

Table of Contents

REVISION HISTORY​ II

DOCUMENT APPROVAL​ II

1. INTRODUCTION​ I

1.1 PURPOSE​ I
1.2 SCOPE​ I
1.3 DEFINITIONS, ACRONYMS, AND ABBREVIATIONS​ I
1.4 REFERENCES​ I
1.5 OVERVIEW​ I

2. GENERAL DESCRIPTION​ II

2.1 PRODUCT PERSPECTIVE​ II
2.2 PRODUCT FUNCTIONS​ II
2.3 USER CHARACTERISTICS​ II
2.4 GENERAL CONSTRAINTS​ II
2.5 ASSUMPTIONS AND DEPENDENCIES​ II

3. SPECIFIC REQUIREMENTS​ II

3.1 EXTERNAL INTERFACE REQUIREMENTS​ III
3.1.1 User Interfaces​ iii
3.1.2 Hardware Interfaces​ iii
3.1.3 Software Interfaces​ iii
3.1.4 Communications Interfaces​ iii
3.2 FUNCTIONAL REQUIREMENTS​ III
3.2.1 Sign In​ iii
3.2.2 signout​ iii
3.2.3 CreateCluster​ iii
3.2.4 DeleteCluster​ iii
3.2.5 ListCluster​ iii
3.2.6 Create Join Request​ iii
3.3 CLASSES / OBJECTS​ III
3.3.1 Clusters​ iii
3.3.2 Request​ iii
3.4 NON-FUNCTIONAL REQUIREMENTS​ III
3.4.1 Performance​ iv
3.4.2 Reliability​ iv
3.4.3 Availability​ iv
3.4.4 Security​ iv
3.4.5 Maintainability​ iv
3.4.6 Portability​ iv
3.5 LOGICAL DATABASE REQUIREMENTS​ IV
3.6 DESIGN CONSTRAINTS​ IV
4. Conclusion​
5. Supporting information

 ​

​ ​

1. Introduction

This section gives a scope description and overview of everything included in this SRS document.
Also, the purpose for this document is described and a list of abbreviations and definitions is
provided.
Since inappropriate planning of the cities, there has been a big problem of traffic in most cities of
India. People spend much of their time in traffic every day. In Addition to this many vehicles in
traffic makes rapid oil consumption, there has been an uprising problem of air pollution. Oil
supplies are very limited all over the world and oil prices are extremely expensive in our country.
Therefore, most of the people have to take buses and since the number of public transportation
vehicles are not sufficient, they travel under uncomfortable conditions. There are some attempts
to solve these problems, however, they focus only on intercity transportation. We came up with
an effective solution as www.uniteonwheels.com .Our project will be used for both intercity and
urban transportations all over India. As a result, our system will be designed to solve these
problems and deficiencies of other systems .

1.1 Purpose

The purpose of this document is to give a detailed description of the requirements for the “Car
Pooling (UniteOnWheels)” (CP-IITI) software. It will illustrate the purpose and complete
declaration for the development of the system. It will also explain system constraints, interface
and interactions with other external applications. This document is primarily intended to be
proposed to a customer for its approval and a reference for developing the first version of the
system for the development team.

1.2 Scope

The “Car Pooling for IITI” is a GPS-based mobile application which helps people to find the
closest vehicle based on the user’s current position and other specifications like time of
departure, price, contact information of passengers travelling and number of seats available. This
information will act as the basis for the search results displayed to the user. The application
should be free to download from either a mobile phone application store or similar services.
Furthermore, the software needs both Internet and GPS connection to fetch and display results.
All system information is maintained in a database, which is located on firebase(an online db
service). The application uses the mobile phone’s GPS navigator. By using the GPS-Navigator,
users can view available vehicles on a map and can navigate towards them. The application also
has the capability of representing both summary and detailed information about the available
vehicles which will take the passenger to the required destination .

This application will bring about a big revolution in sharing vehicles thus reducing pollution and
traffic in cities. This will be operated from both the passenger intended to travel and the
passenger already travelling in a vehicle and willing to share their ride.

 ​

http://www.uniteonwheels.com

​ ​

1.3 Definitions, Acronyms, and Abbreviations

TERMS DEFINITION

CLUSTER Group of people travelling in the same
automobile.

CLUSTER ADMIN The person who acts as a gateway for
communicating about the whereabouts of the
cluster with the prospective passengers.

CLUSTER MEMBERS All members of the cluster including cluster
admin.

FAVOURITE MODE Mode which shows the positions(locations)
of the connected friends only. (future work)

PUBLIC MODE Mode which enables the users to track the
routes of all the available clusters (inclusive
of our favourite people).

TOGGLE BUTTON Mode which toggles visibility of the cluster's
route to preferred people and anonymously
to the public.

REQUEST the request made by new members joining
the cluster. Which is approved by cluster
admin.

1.4 References

1)​ IEEE STD 1233-1998, IEEE Guide for Developing System Requirements Specifications
2)​ IEEE STD 830-1998, IEEE Recommended Practice for Software Requirements

Specifications
3)​ https://senior.ceng.metu.edu.tr/2014/such/documents/SRS.pdf
4)​ https://pub.dev/packages (Flutter packages)

 ​

https://ieeexplore.ieee.org/document/741940
https://ieeexplore.ieee.org/document/720574
https://ieeexplore.ieee.org/document/720574
https://senior.ceng.metu.edu.tr/2014/such/documents/SRS.pdf
https://pub.dev/packages

​ ​

1.5 Overview

(1) In the rest of the SRS we have discussed the user and system, constraints and requirements.
Further we will discuss the limitations of the application. Getting started documentation has
also been mentioned in this SRS.

(2) SRS is organised in a way firstly describing the features offered by our application moving to
the user, system constraints and some general constraints.

2. General Description

2.1 Product Perspective
We have disseminated this section into Product Functions, User Characteristics, Product
Perspective and some General constraints.

2.2 Product Functions

#Sign Up: Users need to sign up to use the app. The users should have a username and phone
no. After filling their name, phone and correct OTP information, they register into the system.

#Sign In: If a user is signed up, s/he can sign in the system by filling phone no in the phone input
box, and completing the otp procedure.

#Sign Out: A user may need to sign out of the system. He/She can do it by clicking the sign out
button which is placed on the User profile page.

#Creating clusters to the database: Our application also needs user’s amicable co-ordination. If
users are ready to accompany some people then, this may also become a potential cluster and
adding this to the database will improve the reachability of the app. So, we enable users of the
app with the best possible UI to add their current location, their departure time, departure point,
arrival point. This is also integrated with personal chat with the passengers of the cluster for
knowing the conditions of the traffic and also the feasibility of their inclusion in their cluster i.e,
if there exists heavy traffic in the route planned before then, by personal chat existing passengers
may request him/her to choose another cluster over them or begin a new cluster.

#Accepting passengers preferences: This functionality allows passengers to enter their
departure point, arrival point, mode of transport(car,autos,cabs,busses), date and time of
departure.There will be certain tolerance limit set by the user itself(for this we will have to set
lower tolerance limit(before preferred time) and upper tolerance limit(after preferred time) for
extracting recommendations) . User also can select the clusters which he/she wants to join i.e., if
he/she wants to join a favourite

#Creating a join Request to a cluster: This functionality give the users to join any cluster of
their choice, this request is sent to the cluster admin, where cluster admin can approve the
request and hence the request maker can join the cluster.

 ​

​ ​

#Approving a Join Request: This functionality allows cluster admins to verify and approve the
join request of a passenger. upon approval the passenger is able to join the cluster.

#Personalised suggestions: Our CarPooling Application analyses the database frequently and
gives personalised suggestions regarding best departing time(based on time tolerances)(this is
different from preferred time as it may happen that a big cluster may begin their journey at some
time just before or after the preferred time, so our app may request us to depart at the nearest
time possible to the preferred time) , travelling time, mode of transport(car,autos,cabs,busses)
and nearest pickup locations and all other locations of pickup(there will be a certain criterion
(distance)for suggesting a place as the best point for boarding the vehicle which is certainly
walkable from the current position of the user)(this is different from our point of departure as
sometimes, it may happen that a big cluster may depart from a point near the preferred pickup
point , so our app may suggest them to depart from the changed point) (this functionality also
encompasses route to that point)so that number of clusters is minimised at any point of time,
which is beneficial to all the users, as per head cost is significantly reduced.

#Send Message: The users can communicate with each other by sending messages via whatsapp
button.

Block User: When a user receives a disturbing message, s/he can block the user who send that
message.

#See cluster’s route: This functionality enables the user to see a particular cluster’s current
route and this is preceded by a set of all available clusters ready to accommodate additional
passengers.

#Disable additional inclusions: This functionality disables the cluster to allow additional
passengers. Passengers can do this if they feel that they can’t accommodate additional
passengers and it stops covering their details.

#Feedback from the customers: This functionality enables the customer to give their
feedback/suggestions regarding the service provided by the app and it lets the developers know
what functionalities are to be added from time to time on a regular basis . Users rate the
application by stars ranging from 1 to 5 inclusive of floating numbers ending with .5 .

2.3 User Characteristics

Users of this application belong to the community of IIT INDORE in the preliminary stage of the
app. Users need to enter the details and know the details at any point of time , mentioned in the
section of 2.2. They need to go to the city or some other tourist spots present in the vicinity of IIT
INDORE . For that, they need to know where and when the maximum number of passengers are
using a particular automobile and a list of groups of people who are ready to accommodate more

 ​

​ ​

people. People needing to use the pooling service will only use the application. They may also be
ready to leave from the place

2.4 General Constraints

●​ Flutter: version 1.0
●​ Firebase: version 7.14.5
●​ Delivery Date: 14th Feb 2020
●​ Budget Constraints: 10,000$

2.5 Assumptions and Dependencies

●​ The device should be a “SmartPhone” , not a Feature Phone. However we also support
creating and joining requests on the web.

●​ Minimum RAM(Random Access Memory): 1 GB
●​ Minimum Memory: 100 mb
●​ Android Version: 6.0 MarshMallow
●​ Location Service: The device must have a GPS(Global positioning system) receiver

hardware installed in it.
●​ Internet Connection: An active internet connection is a must to use this application.
●​ users have a latest version of whatsapp installed on their phone.

3. Specific Requirements

3.1 External Interface Requirements

3.1.1 User Interfaces
This software product is developed for drivers and hitchhikers. Products will be deployed to an
application and all users of the system will access the system through the application based
interface which includes multiple pages according to the system functionality, for instance, for
login functionality there will be a login page. To access the system, every user has a unique
username and password. In addition, there will be a database which stores and manipulates all
the data about the users. App will only be the interface for all the user data which is stored by
database and the execution of provided functionalities. After the sign up, user information will be
transferred to the database. In the sign up process, Google sign in will be used to authenticate
users. After that point, users can register through the web interface. After logging in, users will
be able to log out whenever they want.

3.1.2 Hardware Interfaces
The system runs on a mobile device, using android OS. So there is no such hardware interface, it
will be managed by the in-built OS.

 ​

​ ​

3.1.3 Software Interfaces
The system has Google Map API as a subsystem. Google Map subsystem has their own app
based interface which is a map consisting of roads and locations in a desired area and users can
easily interact with this system.

3.1.4 Communications Interfaces
In communication between driver and hitchhiker, For communication between users and drivers,
a chatting portal will be used, the system shall support messaging functionality and users will be
able to send and receive messages through the remote mobile devices.

3.2 Functional Requirements

3.2.1.​ Sign In

Use Case ID UC2

Actor(s) User

Description User Log In

Preconditions The user shall be able to sign in to the
system.

Post conditions Users will be able to use the system.

Precedence Mandatory

Normal flow of event 1.​ The user opens the app and enters
his phone no to the system.

2.​ User presses the login button.
3.​ User enters his or her OTP

received by phone .

Alternative Flow(s) Flow 1:
1.​ If the user enters the wrong OTP

information, the warning message
for example ”Wrong OTP
information” will be shown to the
user.

Flow 2:
2.​ If the user enters his or her OTP

correctly, the user will be
redirected to the application
relevant page of the system.

 ​

​ ​

3.2.2.​ Sign Out

Use Case ID UC3

Actor(s) User

Description User Log Out

Preconditions The user shall be able to log out into the
system.

Post conditions Users will be able to leave the system.

Precedence Not mandatory

Normal flow of event 1.​ User presses the log out button.
2.​ User leaves the system.
3.​ The app’s login page will be

loaded.

3.2.3.​ Create Cluster.

Use Case ID UC4

Actor(s) User

Description Users shall be able to add clusters.

Preconditions The user shall be able to sign in to the
system.

Post conditions Users shall retrieve transportation requests
from the other users.

Precedence Mandatory

Normal flow of event 1.​ Users shall enter her or his profile
page.

2.​ Users shall press the Create
button on the homepage.

3.​ The Create cluster page will be
loaded.

4.​ Users enter departure time,
available seats, start location,
endLocation, his phoneNo, cost
incurred.

 ​

​ ​

5.​ User draws a route on the map
panel.

3.2.4.​ Delete Cluster.

Use Case ID UC5

Actor(s) User

Description Users shall be able to delete cluster.

Preconditions The user shall add a transportation route
before.

Post conditions Users cannot see the route which is
deleted by the user.

Precedence No mandatory

Normal flow of event 1.​ User​ shall​ presses​ my
transportations button.

2.​ My transportations page will be
loaded.

3.​ User selects the route he or she
wants to delete.

4.​ Delete button is clicked.
5.​ The user deletes the route.

3.2.5.​ List Clusters.

Use Case ID UC6

Actor(s) User

Description Users shall be able to List clusters.

Preconditions The user shall see be on the home page..

Post conditions Users will be able to create a join request
to the admin who owns the cluster.

Precedence No mandatory

Normal flow of event 1.​ User presses the Join button on
the home page.

 ​

​ ​

3.2.6.​ Create a Join request to a Cluster.

Use Case ID UC7

Actor(s) User

Description Users shall be able to create a join request.

Preconditions The user shall click a cluster from the list
of the clusters.

Post conditions Users will be able to contact the admin
who owns the cluster.

Precedence No mandatory

Normal flow of event 2.​ User presses the send join request
button on the journey details
page.

3.2.7.​ Search Transportation Route

Use Case ID UC8

Actor(s) User

Description Users shall be able to search the route.

Preconditions The user shall sign in to the system.

Post conditions Users will be able to select a route from
the available route list.

Precedence No mandatory

Normal flow of event 1.​ User fills “from” input field.
2.​ User fills the “to” input field.
3.​ User​ presses​ the​ search

button.

Alternative Flow(s) Flow 1:
1.​ User forgets to fill “from” or “to”

input field.
2.​ The related warning message is

shown to the user to fill the input
fields properly.

 ​

​ ​

 1.​ User fills the input fields properly.
2.​ The available routes will be

listed.

3.2.8.​ Send Message

Use Case ID UC9

Actor(s) User

Description Users shall be able to send messages
through the system via whatsapp.

Preconditions The user shall sign in to the system.

Post conditions Users will be able to communicate with
each other.

Precedence No mandatory

Normal flow of event 1.​ User enters the profile page of the
user who is intended to be
communicated.

2.​ User presses the send message
button.

3.​ The message page will be loaded.
4.​ User types the content of the

message.
5.​ User presses the send button to

send the message content.
6.​ The message content will be

stored and viewed in the message
panel.

 ​

​ ​

3.2.9.​ Rate User

Use Case ID UC11

Actor(s) User

Description Users shall be able to rate the driver
through the system.

Preconditions The transportation route shall be
completed​ with​ driver​
and hitchhiker.

Post conditions The driver’s rating will be updated.

Precedence No mandatory

Normal flow of event 1.​ After the transportation, the
hitchhiker login to the
system.

2.​ Popup window is open.

Alternative Flow(s) Flow 1:
1. Hitchhiker clicks the star

icon to rate the driver's
related attitude.

Flow 2:
1.​ Hitchhiker clicks close icon.
2.​ The popup window will be

closed.

 ​

​ ​

3.3 Classes / Objects

3.3.1 Cluster
class Cluster {

 String clusterID; //Identifies each cluster uniquely

 String adminName; //Name of the host of a cluster

 String initialLocation; //Starting position of the cluster

 String finalLocation; //Ending location of the cluster

 String phoneNo; // Contact phone number of host of cluster

 String cost;

 int noOfPassengers;//Number of passengers currently in the cluster

 String carNo;

 String carType; //Explains model or give idea of type of car

 int leavingTime; //time when cluster leaves initial location

 String get date =>//Converts the date stored in integer format

DateTime.fromMillisecondsSinceEpoch(leavingTime)

 .toIso8601String()

 .substring(0, 10);

 String adminUserID; //Identifies host uniquely

 LatLng startPoint; //Coordinates of initial location

 LatLng endPoint;//Coordinates of final location

 Map<String, Request> requests = {};

 ​

​ ​

 int get pWatingRequest { //Number of requests waiting to be

accepted

int count = 0;

 requests.forEach((key, value) {

 if (!value.isAccepted) count++;

 });

 return count;

 }

 int get pApprovedRequest {//Keep note of accepted requests

 int count = 0;

 requests.forEach((key, value) {

 if (value.isAccepted) count++;

 });

 return count;

 }

 DateTime get pLeavingTime => //Converts the date stored in integer

format

DateTime.fromMillisecondsSinceEpoch(leavingTime);

 Cluster(

 {this.adminName,

 this.initialLocation,

 this.finalLocation,

 this.phoneNo,

 this.cost,

 this.noOfPassengers,

 this.carNo,

 this.carType,

 this.leavingTime,

 this.adminUserID});

 Cluster.fromMap(Map data) //It is a constructer which gets a map

of data from firebase in JSON format and sets the data in an

instance of Cluster class

{ this.adminName = data["adminName"] ?? "";

 ​

​ ​

 this.initialLocation = data["initialLocation"] ?? "";

 this.finalLocation = data["finalLocation"] ?? "";

 this.phoneNo = data["phoneNo"] ?? "";

 this.cost = data["cost"] ?? "";

 this.noOfPassengers = data["noOfPassengers"] ?? 1;

 this.carNo = data["carNo"] ?? "";

 this.carType = data["carType"] ?? "";

 this.leavingTime = data["leavingTime"] ?? 0;

 this.adminUserID = data["adminUserID"] ?? "";

 (data["requests"] ?? {}).forEach((key, value) {

 this.requests.addAll({key: Request.fromMap(value)});

 });

 }

 Map<String, dynamic> toMap() {//This function return the JSON form

which is understandable to firebase from the Cluster at which it is

called.

 return {

 "adminName": adminName,

 "initialLocation": initialLocation,

 "finalLocation": finalLocation,

 "phoneNo": phoneNo,

 "cost": cost,

 "noOfPassengers": noOfPassengers,

 "carNo": carNo,

 "carType": carType,

 "leavingTime": leavingTime,

 "date": date,

 "adminUserID": adminUserID,

 "startPoint": startPoint.toJson(),

 "endPoint": endPoint.toJson(),

 };

 }

}

 ​

​ ​

3.3.2 Current User

class CurrentUser //This class makes an instance of the Current User who

has signed in

{

 String get uid => user.uid; //User Id which uniquely identifies the

current user on his/her device

 String get phoneNo => user.phoneNumber;

 String get userName => user.displayName; //Name of currently signed in

user

 String get userEmail => user.email;

 double lat;//Identifies latitude of current user

 double lng;//Identifies longitude of current user

 String password; //Maintains password set by current user

 FirebaseUser user;

 // collection ref. to update user in firestore

 final CollectionReference userData =

 Firestore.instance.collection('UserData');

 Future<FirebaseUser> getCurrentUser() async

 {//gets the current user information from the stored database

 user = await FirebaseAuth.instance.currentUser();

 return user;

 }

 Future<void> setCurrentData() async {}

 Map toMap() {//This function return the JSON form which is

understandable to firebase from the CurrentUser at which it is called.

 return {

 "userName": userName,

 "password": password,

 "uid": uid,

 "phoneNo": phoneNo,

 "lat": lat,

 "lng": lng,

 };

 ​

​ ​

 }

 //This function stores the information of current user in the local

database of device

 Future<void> storeUserInMemory(FirebaseUser user) async {

 SharedPreferences sharedPreferences = await

SharedPreferences.getInstance();

 sharedPreferences.setString("username", user.displayName);

 sharedPreferences.setString('email', user.email);

 sharedPreferences.setString('phone', user.phoneNumber);

 sharedPreferences.setString('uid', user.uid);

 }

 Future updateUserData(String uid, String username, String email,

 String password, String phoneNo) async {

 return await userData.document(uid).setData({

 'username': username,

 'email': email,

 'uid': uid,

 'password': password,

 'phoneNo': phoneNo,

 });

 }

 //This function logs the current user out of the running session

 Future<void> logOut(BuildContext context) async {

 await FirebaseAuth.instance.signOut();

 Navigator.of(context).pushReplacementNamed("/init");

//Replace the current route of the navigator by pushing the route named

and then disposing the previous route once the new route has finished

animating in.

 }

}

3.3.2 Request

class Request {

 String phoneNo;

 String requestUserID; //Identifies each requesting user uniquely

 String requestUserName; //Cluster request user name

 ​

​ ​

 bool isAccepted; //true if the request is accepted

 int requestTime; //time when the request is made

 Request(

 {this.requestUserID,

 this.isAccepted,

 this.phoneNo,

 this.requestUserName});

 Request.fromMap(Map data) {//Constructor which takes the JSON format of

data from firebase and sets the data in an instance of the Request class,

and returns that instance.

 this.requestUserID = data["requestUserID"] ?? "";

 this.isAccepted = data["isAccepted"] ?? false;

 this.phoneNo = data["phoneNo"] ?? "";

 this.requestUserName = data["requestUserName"] ?? "";

 this.requestTime =

data["requestTime"]??DateTime.now().millisecondsSinceEpoch;

 }

 Map<String, dynamic> toMap() {//Function which returns the JSON format

of the data of the request object call the function

 return {

 "adminUserID": requestUserID,

 "requestUserName": requestUserName,

 "isAccepted": isAccepted,

 "phoneNo": phoneNo,

 "requestTime": requestTime,

 };

 }

}

 ​

​ ​

3.3.2 CarPoolingProvider Class

class CarPoolingProvider with ChangeNotifier {

 //This is a central distribution unit (CDU) which fetches data from the

database and provide it to member functions of other classes in the system

 //VARIABLES -------------------------

 CurrentUser currentUser = CurrentUser();//Current user initiated

 /*

 *CLUSTERS key: unique cluster ID

 this helps in accessing clusters more effectively/

 Map<String, Cluster> globalClustersMap = {};

//This contains all the clusters which are present in the database

 Map<String, Cluster> myClustersHistoryMap = {};

//This attribute hold the history or past interacted data

 Map<String, Cluster> myRequestHistoryMap = {};

//

 //

 //INIT -----------------------------

 CarPoolingProvider() {

 currentUser = CurrentUser();

 currentUser.getCurrentUser();

 loadGlobalClusterData(force: true);

 loadMyClustersHistoryData(force: true);

 }

 //

 //LOADERS --------------------------

 Future<String> loadGlobalClusterData({bool force = false}) async {

//This function initiates all the clusters in globalClusterMap which are

present in the database

 if (force || globalClustersMap.length == 0) {

 await Firestore.instance

 .collection("clusters")

 .getDocuments()

 .then((value) {

 ​

​ ​

 value.documents.forEach((element) {

 globalClustersMap.addAll({

 element.documentID: Cluster.fromMap(element.data),

 });

 globalClustersMap[element.documentID].clusterID =

element.documentID;

 print("Data Loaded from firebase");

 notifyListeners();

 });

 });

 }

 return "done";

 }

 Future<String> loadMyClustersHistoryData({bool force = false}) async {

 if (force || myClustersHistoryMap.length == 0) {

 currentUser.user = await currentUser.getCurrentUser();

 await Firestore.instance

 .collection("clusters")

 .where("adminUserID", isEqualTo: currentUser.uid)

 .getDocuments()

 .then((value) {

 value.documents.forEach((element) {

 myClustersHistoryMap.addAll({

 element.documentID: Cluster.fromMap(element.data),

 });

 myClustersHistoryMap[element.documentID].clusterID =

 element.documentID;

 notifyListeners();

 });

 });

 fillRequestData();

 print("loaded my clusters from firebase");

 }

 return "done";

 }

 ​

​ ​

 Future<String> loadRequestData({String clusterId, bool force = false})

async {

 if (force || myClustersHistoryMap[clusterId] != null)

 await Firestore.instance

 .collection("clusters")

 .document(clusterId)

 .get()

 .then((value) {

 myClustersHistoryMap.addAll({

 value.documentID: Cluster.fromMap(value.data),

 });

 notifyListeners();

 });

 fillRequestData();

 print("Data Loaded from firebase");

 return "done";

 }

 Future<String> fillRequestData() async {

 if (myClustersHistoryMap.length != 0) {

 globalClustersMap.forEach((key, element) {

 if (globalClustersMap[element.clusterID].requests[currentUser.uid]

!=

 null) {

 myRequestHistoryMap.addAll(

 {element.clusterID: globalClustersMap[element.clusterID]});

 }

 });

 }

 print("Data Loaded from firebase");

 return "done";

 }

 Future<String> createClusterData(Cluster cluster) async {

 cluster.adminName = currentUser.userName;

 cluster.adminUserID = currentUser.uid;

 ​

​ ​

 cluster.phoneNo = currentUser.phoneNo;

 DocumentReference docRef = await Firestore.instance

 .collection("clusters")

 .add(cluster.toMap())

 .catchError(onError);

 myClustersHistoryMap[docRef.documentID] = cluster;

 globalClustersMap[docRef.documentID] = cluster;

 notifyListeners();

 print("Data uploaded to firebase");

 return "done";

 }

 Future<String> createClusterJoinRequest({@required String clusterID})

async {

 if (clusterID == null || clusterID == "") {

 Fluttertoast.showToast(msg: "Cluster Id is not correct");

 return "not Done";

 }

 Request request = Request.fromMap({});

 request.isAccepted = false;

 request.phoneNo = currentUser.phoneNo;

 request.requestUserID = currentUser.uid;

 request.requestUserName = currentUser.userName.toString();

 request.requestTime = DateTime.now().millisecondsSinceEpoch;

 await Firestore.instance

 .collection("clusters")

 .document(clusterID)

 .setData({

 "requests": {currentUser.uid: request.toMap()}

 }, merge: true).catchError(onError);

 notifyListeners();

 print("Data uploaded to firebase");

 return "done";

 }

 Future<String> acceptUserRequest(

 ​

​ ​

 {@required String clusterID, @required String requestUserId}) async

{

 await Firestore.instance

 .collection("clusters")

 .document(clusterID)

 .setData({

 "requests": {

 requestUserId: {

 "isAccepted": true,

 }

 }

 }, merge: true).catchError(onError);

 notifyListeners();

 Fluttertoast.showToast(msg: "Request Made", webShowClose: true);

 print("Data uploaded to firebase");

 return "done";

 }

 void onError(dynamic err) {

 Fluttertoast.showToast(

 msg: err.toString(),

 timeInSecForIosWeb: 2,

 toastLength: Toast.LENGTH_LONG,

 webShowClose: true);

 }

}

 ​

​ ​

3.4 Non-Functional Requirements

Non-functional requirements may exist for the following attributes. Often these requirements

must be achieved at a system-wide level rather than at a unit level. State the requirements in the

following sections in measurable terms (e.g., 95% of transactions shall be processed in less than

a second, system downtime may not exceed 1 minute per day, > 30 day MTBF value, etc).

3.4.1 Performance: Location of members travelling in a vehicle should be updated in the

database without any delay and this live location should also be reflected in other user’s

applications.

3.4.2 Reliability: Our software ensures location accurately upto 5-mts.

3.4.3 Availability : Our software is made to ensure 24/7 service.

3.4.4 Security: One can join a ride in both the Favorite mode and Public mode where when the

person is in Favorite mode, he can join rides of his friends only while when he is in Public mode

he can join all those rides where the passengers are willing to accept an anonymous ride.

3.4.5 Maintainability: The application code is refactored, separated into different modules

(modularity) so that it is easier to understand and debug. This ensures that the code is less

complex and developer friendly.

3.4.6 Portability: Our application is easy to download from the Google PlayStore and easy to

transfer between users in form of an application bundle known as apk file which is easily

available on our website www.uniteonwheels.in.

 ​

http://www.uniteonwheels.in

​ ​

3.6 Logical Database Requirements
A database will be used to store current location of the passengers travelling and that location
will be accessed by the passengers who are intended to travel in the vehicles. For this purpose we
have used the firebase database as our online database. Users can create, update and delete
clusters. as well as can join, approve and delete requests.

3.6.1 Database schema on Cloud storage

3.6.2 Data Formats and Constraints

 ​

​ ​

3.8 Design Layouts

The design templates which were used for designing the application. These went through
continuous updation over iterations.

3.8.1 Application Design Structure

 ​

​ ​

3.8.2 Notification Page Layout.

3.8.3 Home Page Layout.

This page helps users to navigate to different pages, to provide join Create and approve cluster
and their requests.

 ​

​ ​

3.8.4 Login Page

If they do not have an account, they can register the system by clicking the “Sign Up” button. In
this page, users have to fill the form which is about their name, username, phone number and otp.

4. Conclusion
In this document, the functional and other requirements of the system are described.
Furthermore, the needs of the user are stated through the document. However, all requirements
are not defined and some of the requirements need to be clarified in this document. To sum up,
this document is the primary document which upon all of the subsequent design, implementation,
test and validation processes will be based.

5. Supporting Information
At the beginning of the document, table of contents and list of figures are included.

 ​

	A Car Pooling Platform
	Revision History
	Document Approval
	1. Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Definitions, Acronyms, and Abbreviations
	1.5 Overview

	2. General Description
	2.1 Product Perspective
	2.2 Product Functions
	2.3 User Characteristics
	2.4 General Constraints
	●​Flutter: version 1.0
	2.5 Assumptions and Dependencies

	3. Specific Requirements
	3.1 External Interface Requirements
	3.1.1 User Interfaces
	3.1.2 Hardware Interfaces
	3.1.3 Software Interfaces
	3.1.4 Communications Interfaces

	3.2 Functional Requirements

	3.2.1.​Sign In
	3.2.2.​Sign Out
	3.2.3.​Create Cluster.
	3.2.4.​Delete Cluster.
	3.2.5.​List Clusters.
	3.2.6.​Create a Join request to a Cluster.
	3.3 Classes / Objects
	3.3.1 Cluster
	3.3.2 Current User
	3.3.2 Request
	
	3.3.2 CarPoolingProvider Class

	
	3.4 Non-Functional Requirements
	3.4.1 Performance: Location of members travelling in a vehicle should be updated in the database without any delay and this live location should also be reflected in other user’s applications.
	3.4.2 Reliability: Our software ensures location accurately upto 5-mts.
	3.4.3 Availability : Our software is made to ensure 24/7 service.
	3.4.4 Security: One can join a ride in both the Favorite mode and Public mode where when the person is in Favorite mode, he can join rides of his friends only while when he is in Public mode he can join all those rides where the passengers are willing to accept an anonymous ride.
	3.4.5 Maintainability: The application code is refactored, separated into different modules (modularity) so that it is easier to understand and debug. This ensures that the code is less complex and developer friendly.
	3.4.6 Portability: Our application is easy to download from the Google PlayStore and easy to transfer between users in form of an application bundle known as apk file which is easily available on our website www.uniteonwheels.in.
	

	3.6 Logical Database Requirements
	3.8 Design Layouts

	4. Conclusion
	5. Supporting Information

