
Rotation Formalism in 3 Dimension
● Name: Anubhav Dinesh Patel

● Email: anubhavp28@gmail.com

● Github: anubhavp28

● University: Indian Institute of Information Technology Kalyani

● Course: Bachelor of Technology in Computer Science and Engineering

● Course Term: 2017/18 - 2020/21 (4 Year)

● Timezone: IST (GMT +5:30)

Proposal

This project is regarding adding a module scipy.spatial.rotation that
would allow for easy description, creation and application of rotations
in 3 dimensions.

Deliverables

At the end of this project, scipy will have a scipy.spatial.rotation
module with:

● Rotation class which would provide ability to take a rotation or a
sequence of rotations in 3d represented using any of the following
formalisms - quaternions, axis-angle, rotation matrix, euler
angles and apply them to 3d vectors or a sequence of 3d vectors.
It would also provide support for conversion from one formalism to
another.

● qspline function to perform quaternion cubic spline interpolation
(interpolation with quaternion, angular rate and acceleration
vectors as continuous functions of time).

● slerp function which would perform quaternion interpolation given
the ends and the parameter between 0 and 1 using Spherical Linear
Interpolation (SLERP) algorithm.

● davenportq function to solve for Wahba's Problem, given the set of
body frame vectors, set of reference vectors and non-negative
weights.

http://github.com/anubhavp28/
http://iiitkalyani.ac.in/

● orthogonalize function to orthogonalize a approximately orthogonal
3x3 matrix using modified Shepperd’s algorithm.

Implementation

The implementation language will be Python. For any implementation of
method/algorithm, numpy vector operations will be prefered, making sure
computation happen at C level. Loops inside python would be avoided as
much as possible. The implementation of any method/algorithm will
accompany tests and documentation for the same.

Discussion

Rather than supporting multiple convention of a formalism, in my
opinion it is better to support just a single widely used convention.
Our choice should be consistent across all the methods. For this
project, I have decided on a convention and way of representation
(using ndarray) for each formalism -

1. Quaternions - will be represented by a ndarray of dim (4) with
its scalar part first, for a sequence of quaternions ndarray of
dim (n,4) will be used.

2. Euler Angles - will be represented by a ndarray of dim (3). For
a sequence of euler angles ndarray of dim (n,3) would be used.
Euler angles have 24 different conventions. To implement
support for all of the conventions would be a difficult task.
An already available implementation is given in [14], which can
be used in SciPy to support all 24 conventions of euler angles.
Though the implementation is not vectorised we may miss out on
performance gain, but considering the limited time period of
GSoC, it is our best choice. In the future we can add a
vectorised implementation.

For user to be able to choose among different conventions,
every euler function will have an addition parameter axes - a
four character string.

The first character is ‘r’ (rotating == intrinsic), or ‘s’
(static == extrinsic).

The next three characters give the axis (‘x’, ‘y’ or ‘z’) about
which to perform the rotation, in the order in which the
rotations will be performed.

3. Angle-Axis - will be represented by a ndarray of dim (3), as a
vector r = θê where θ is the angle of rotation (in radians) and
ê is a unit vector representing the eigen-axis.

4. Rotation Matrices - will be represented by a ndarray of dim
(3,3) and sequence of rotation matrices by ndarray of dim
(n,3,3).

Details

Rotation

Rotation class will provide a common convenient interface to represent
a rotation, compose and apply them. Rotation will internally use
quaternions, with ability to store a single rotation or a sequence of
rotations. It will be implemented with the following methods -

1. __init__(self, rarray, formalism = "quat")
Sets the instance to the given rotation(s). Internally, it will call the
appropriate method among setfromquat, setfromvector, setfrommatrix and
setfromeangles, depending upon the formalism supplied.

Parameters

rarray : ndarray
Array of rotations. Its is expected to be of specific dimension depending
upon the value of `formalism` parameter. Below is the list of valid
formalism and the expected dimensions of rarray for it.

“quat” --> (n,4) or (4) : for quaternions
“matrix” --> (n,3,3) or (3,3) : for rotation matrices or DCM
“vector” --> (n,3) or (3) : for axis-angle
any valid `axes` sequence --> (n,3) or (3) : for euler angles

formalism : string, optional
The formalism used to represent rotations in rarray. Defaults to quaternion
representation.

2. setfromquat(self, rarray)

Sets the Rotation instance to rotations of the given quaternions. Since the
Rotation class uses quaternions internally, it would require no conversion. I feel
we need to discussion the behaviour when the method is given a non-unit quaternion
- should it throw an exception or silently convert it to a unit quaternion.

Parameters

rarray : ndarray with shape of (n,4)

Array of quaternions with their scalar part first, ie in form of (w,x,y,z).
Quaternions are assumed to be of unit magnitude.

Returns

None

3. setfromvector(self, rarray)
Sets the `Rotation` instance to rotations of the given rotation vectors
(axis-angle vectors). The algorithm described by [1] can be used here.

Parameters

rarray : ndarray with shape of (n,3)
Array of rotation vectors(axis-angle vectors) assumed to be of the form
r = theta * e^, where e^ is a unit vector in the direction of the axis of
rotation and theta is the angle in radians. The rotation occurs in the
sense prescribed by the right-hand rule.

Returns

None

4. setfrommatrix(self, rarray)
Sets the Rotation instance to rotations of the given rotation matrices(DCM). Among
the conversion algorithm given in [2], the one with copysign seems simple and
cleaner for implementation. Behaviour of this method need a discussion for the
case when the given matrix is not a pure rotation i.e. is not orthogonal with
determinant 1.

Parameters

rarray : ndarray with shape of (n,3,3)

Array of rotation matrices

Returns

None

5. setfromeangles(self, rarray, axes = “rzyx”)
Sets the Rotation instance to rotations of the given euler angles. The algorithm
is described in [3].

Parameters

rarray : ndarray with shape of (n,3)
Array of euler angles.

Returns

None

6. rotate(vectors)
Function will rotate the given array of vectors. Depending upon the cardinality of
the Rotation instance as well as the dimensions of vectors ndarray given,
different operation will be performed, i.e. the function will choose among one
rotation on many vectors, many rotations on one vector and many rotations on many
vectors. The algorithm to rotate a vector by a quaternion is given in [4].

permitted combinations are -

1. When the instance is set to a single rotation and the dimension of
vectors is (n,3). The single rotation will be used to rotate all the
vectors.

2. When the instance is set to a sequence of n rotations and the dimension
of vectors is (1,3). The sequence of n rotations will be applied in order
to the single vector.

3. When the instance is set to a sequence of n rotations and the dimension
of vectors in (n,3). Then 1-to-1 mapping between rotations and vectors will
be used, i.e. the ith vector will be rotated by ith rotation of the instance.

Parameters

vectors : ndarray of dim (n,3)

Array of vectors to rotate.

Returns

An ndarray of rotated vectors.

7. __mul__(self, other)
* operator will be overloaded to provide a way to combine two sequence of

rotations. The result of multiplication of two instance of Rotation will
depend upon the cardinality of sequence of rotations they represent. The algorithm
for combining two quaternions is given in [4], basically which just requires a
quaternion multiplication.

permitted combinations of A*B, where A and B are instance of Rotation will be -

1. When A is set to single rotation and B is set to sequence of
n rotations. The resulting instance will have cardinality of n.
The ith rotation of the resulting instance will represent a rotation
first by A and then by B[i].

2. When A is set to sequence of n rotations and B is set to a
single rotation. The resulting instance will have cardinality of n.
The ith rotation of the resulting instance will represent a rotation
first by A[i] and then by B.

3. When A is set to sequence of n rotations and B is also set
to another sequence of n rotations. The resulting instance will have
cardinality of n. The ith rotation of the resulting instance will
represent a rotation first by A[i] and then by B[i].

All other combination will generate a error.

8. toquat()
returns the sequence of rotations the instance is set to, using quaternions.

Parameters

None

Returns

An ndarray of dimension (n,4)

9. tomatrix()
returns the sequence of rotations the instance is set to, using rotation
matrices(DCM). To perform conversion from quaternion to rotation matrix, the
algorithm described in [5] could be used.

Parameters

None

Returns

An ndarray of dimension (n,3,3)

10. tovector()
returns the sequence of rotations the instance is set to, using rotation
vectors (axis-angle representation). The algorithm detailed in [6] could be used
for conversion from quaternions to rotation vectors with proper consideration for
edge cases of theta = 0 and theta = pi.

Parameters

None

Returns

An ndarray of dimension (n,3)

11. toeangles(axes = “rzyx”)
returns the sequence of rotations the instance is set to, using euler angles. [7]
details an algorithm for quaternion to euler angles conversion taking into account
the singularities.

Parameters

None

Returns

An ndarray of dimension (n,3)

Quaternion SLERP

For performing a spherical linear interpolation between quaternions, always
using the "short way" between quaternions, a function `slerp` will be
implemented. Implementation of this seems to be easy and quite straightforward.
[8] describes two formulae for quaternion slerp, the second one derived
from 4D geometry seems more practical and easier for implementation.
For edge cases such as when two quaternions have very small angle between them
we can switch to linear interpolation.

slerp(q0,q1,t)

Parameters

q0 : ndarray

initial quaternion (with scalar part first)

q1 : ndarray
final quaternion (with scalar part first)

t : int

interpolation parameter 0 < t < 1

Returns

interpolated quaternion as a ndarray

Quaternion Cubic Spline Interpolation

Spline interpolation will match the value of quaternion at given times and the
quaternion, angular rate and acceleration vectors will be continuous functions.

For performing a cubic spline interpolation, a function `qspline` will be
implemented. The function will take value of quaternion at specific times, the
initial and the final angular rate along with number of output points.

The algorithm described in [12] and a sample implementation in [13], could be
used. Since, the implementation is complex, internal functions will be created -
_b, _binverse, _r, _rates, _coeff_calc, _slew.

qspline(t,q,wi,wf,o)

Parameters

t : ndarray of dim (n)
array of input times

q : ndarray of dim (n)
array of quaternion at corresponding times

wi : float
initial angular rate

wf : float
final angular rate

o : Int
number of output points

Return

A tuple of 3 ndarrays, for quaternions, angular rates and angular
acceleration.

Davenport's Q-Method

For solving Wahba's Problem, a function `daveportq` will be implemented. Attitude
quaternion will be calculated to perform transformation from reference frame to
body frame. The function will find the Davenport matrix and then use numpy to
calculate maximum eigenvalues and corresponding eigenvector. The algorithm is
described in [10] and a elaborated proof in [11].

davenportq(p,q,w)

Parameters

p : ndarray of dim (n,3)

array of reference frame vectors
q : ndarray of dim (n,3)

array of body frame vectors
w : ndarray of dim (n)

array of non-negative weights

Returns

ndarray of size (4) representing the best fitting attitude
quaternion.

Orthogonalization of 3x3 Matrix

For re-orthogonalization of an approximately orthogonal 3x3 matrix, we can
implement a function `orthogonalize`. It will implement the modified Shepperd’s
algorithm described in [9].

orthogonalize(mat)

Parameters

mat : ndarray of dim (n,3,3)

Returns

ndarray of dim (n,3,3).

Tentative Timeline

Community Bonding Period : April 23, 2018 - May 14, 2018

● Setup development environment
● Active participation in regular meetings
● Finalise API
● Finalise deadlines and milestones
● Increase familiarity with practices and processes
● Bug fixes/patches

Week 1 : May 14, 2018 - May 21, 2018

● Implement setter functions of Rotation class - setfromquat,
setfromvector, setfrommatrix, setfromeangles.

● Documentation for the same.

Week 2 : May 21, 2018 - May 28, 2018

● Implement functions - toquat, tomatrix, tovector, toeangles of
Rotation class.

● Documentation for above functions.
● Add tests to cover functions implemented in week 1 and week 2.

Week 3 : May 28, 2018 - June 4, 2018

● Implement function rotate of Rotation class.
● Documentation for rotate.
● Add tests for rotate.

Week 4 : June 4, 2018 - June 11, 2018

● Implement function __mul__ of Rotation class.
● Documentation for multiplication of Rotation instances.
● Add tests for multiplication.

Week 5 : June 11, 2018 - June 18, 2018

● < Buffer Week > Complete leftover work and discussion with
mentors.

Week 6 : June 18, 2018 - June 25, 2018

● Implement functions - slerp and orthogonalize.
● Start documenting and writing tests for the same.

Week 7 : June 25, 2018 - July 2, 2018

● Complete documentation and tests for slerp and orthogonalize.
● Implement davenportq function.
● Documentation and tests for davenportq.

Week 8 : July 2, 2018 - July 9, 2018

● Complete documentation and tests for davenportq.
● Complete any leftover work.

Week 9 : July 9, 2018 - July 16, 2018

● Implement internal functions of qspline - _b, _binverse, _r.
● Documentation for the same.

Week 10 : July 16, 2018 - July 23, 2018

● Implement internal function of qspline - _rates.
● Documentation for the same.

Week 11 : July 23, 2018 - July 30, 2018

● Implement internal function of qspline - _calccoeff, _slew.
● Implement qspline
● Documentation and tests for qspline.

Week 12 : July 30, 2018 - August 6, 2018

● < Buffer Week > Complete leftover work and discussion with
mentors.

Previous Contribution to Scipy

● (Open) https://github.com/scipy/scipy/pull/8584

References

[1]
http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaterni
on/index.htm

[2] https://en.wikipedia.org/wiki/Rotation_matrix

[3] “Euler Angles, Quaternions and Transformation Matrices”, NASA.
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf

[4] https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation

[5]
http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToMat
rix/index.htm

https://github.com/scipy/scipy/pull/8584
http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
https://en.wikipedia.org/wiki/Rotation_matrix
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToMatrix/index.htm
http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToMatrix/index.htm

[6] https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation

[7]
http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEul
er/

[8] http://run.usc.edu/cs520-s15/assign2/p245-shoemake.pdf

[9] “Unit Quaternion from Rotation Matrix”, F. Landis Markley, NASA Goddard Space
Flight Center.

[10] http://malcolmdshuster.com/FC_MarkleyMortari_Girdwood_1999_AAS.pdf

[11]
https://math.stackexchange.com/questions/1634113/davenports-q-method-finding-an-or
ientation-matching-a-set-of-point-samples

[12] http://qspline.sourceforge.net/qspline.pdf

[13]
https://sourceforge.net/projects/qspline/files/qspline/%5BUnnamed%20release%5D/qsp
line.zip/download

[14]
http://matthew-brett.github.io/transforms3d/reference/transforms3d.euler.html

https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation
http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
http://run.usc.edu/cs520-s15/assign2/p245-shoemake.pdf
http://malcolmdshuster.com/FC_MarkleyMortari_Girdwood_1999_AAS.pdf
https://math.stackexchange.com/questions/1634113/davenports-q-method-finding-an-orientation-matching-a-set-of-point-samples
https://math.stackexchange.com/questions/1634113/davenports-q-method-finding-an-orientation-matching-a-set-of-point-samples
http://qspline.sourceforge.net/qspline.pdf
https://sourceforge.net/projects/qspline/files/qspline/%5BUnnamed%20release%5D/qspline.zip/download
https://sourceforge.net/projects/qspline/files/qspline/%5BUnnamed%20release%5D/qspline.zip/download
http://matthew-brett.github.io/transforms3d/reference/transforms3d.euler.html

