
SQLite Happy Hour Twitter Space
22nd March 2022 - 12:30pm PT / 1:30pm MT / 3:30pm ET

Welcome to the SQLite Happy Hour! This hour-long session will feature three projects that are
doing interesting things with SQLite. Each project will provide a ten minute overview, followed by
five minutes of discussion from the panel. The last 15 minutes of the hour will be an open
discussion and general Q&A.

This document is open for anyone to edit. Please feel free to drop notes and questions in as we
go along.

The recording of the space is available here: https://twitter.com/i/spaces/1ypKdEXvkMLGW

Riffle
Geoffrey Litt @geoffreylitt, Nicholas Schiefer @nschiefer

Riffle asks: what if you wrote your whole UI as a query over a local database? So far, we’ve built
a prototype using SQLite and React. More background in this paper:

Building data-centric apps with a reactive relational database

Research project goal is to make development simpler, as opposed to the ongoing trend of
more complexity.

Riffle looks at having a database-centric mechanism at the heart of the view. Declarative queries
could make apps easier to understand and debug.

SQLite is the tool used for the prototype.

Local first architecture: Ink & Switch have been promoting this. Return to a world where you
local client device serves as a source of truth - you can access data offline etc - and when the
network is available your data gets synced to the cloud.

The prototype: a reactive layer that uses SQLite as a state management backend for React,
using https://sql.js.org/ which compiles SQLite in WASM. Also built prototypes of desktop apps
using https://github.com/tauri-apps/tauri - like Electron but using the system web browser
instead of bundling its own.

Since they control the writes, they can re-execute every query after any writes happen. SQLite
is so fast that this works fine, queries all take under a ms and even with a thousand queries you
can still run them all.

https://www.worldtimebuddy.com/?qm=1&lid=5128581,5391959,5419384,2643743&h=5128581&date=2022-3-22&sln=15.5-16.5&hf=1
https://twitter.com/i/spaces/1ypKdEXvkMLGW
https://twitter.com/geoffreylitt
https://twitter.com/nschiefer
https://riffle.systems/essays/prelude/
https://sql.js.org/#/
https://github.com/tauri-apps/tauri

ALL UI state is in the database - there’s no local React component state - literally everything is
in the database. This means all UI state is persistent by default.

IndexedDB is used for the in-browser persistence. The Tauri desktop app stores to a file on disk.
Maybe SQL.js could do that with the new Chrome filesystem API stuff too?

Questions about Riffle:

●​ Will Riffle target vanilla JS, or Node.js?
○​ It’s running client-side, so vanilla JS

●​ From Stephen: What about browser-native UI state like scroll position, URL path, query
string, multiple independent browser tabs, etc?

○​ Great question. We do some syncing of browser-native state to put it in the DB:
eg, to support virtualized list rendering we update scroll state in the DB with an
event handler. But there’s definitely some browser state that isn’t being captured
reliably. In the purest world, the pixels on your screen would be produced by a
DB query :)

●​ From Predrag Gruevski: Would “query the queries” be a viable approach for narrowing
the set of queries that need to be re-executed after a given write? Simple example: if
table X gets modified, query for all queries that have table X in a FROM clause, then
re-execute them.

○​ yeah, that’s roughly the direction we’re headed. It’s a little trickier than that if you
start having subqueries / materialized view, but good general idea

●​ From Longwei Su: Right now, each db update will cause a whole refresh. Is there any
plan to refine the binding? So that any db update will only trigger UI component that
“subscribe” to this section of the data. Sqlite have trigger, which can have callback on
record update. How to construct that “publisher”-> ”subscriber” mapping from sql query?

Comments for Riffle:

-​ From Jesse - http://web.dev/file-system-access/ isn’t a very rich api - I think you could
persist to it, but I don’t think you can seek/update/…/all the posix stuff sqlite probably
needs

-​ Hasura documented how they do reactive queries with Postgres, might be useful for
minimising refetch overhead?

Datasette
Simon Willison @simonw

Datasette is an open source multi-tool for exploring and publishing data. It explores SQLite as a
read-only mechanism for publishing structured data online in as flexible a manner as possible,

http://web.dev/file-system-access/
https://github.com/hasura/graphql-engine/blob/master/architecture/live-queries.md
https://twitter.com/simonw
https://datasette.io/

and aims to build an ecosystem of plugins that can handle a wide range of exploratory data
analysis challenges.

Video introduction here: https://simonwillison.net/2021/Feb/7/video/

Questions about Datasette:

●​ How does it compares with https://github.com/dinedal/textql, it seems the same but
instead of sqlite binaries, just raw csv files which are more ubiquitous, and easier to view
and edit with with office software (msf excel, libreoffice calc) ?

○​ sqlite-utils memory provides similar functionality:
https://simonwillison.net/2021/Jun/19/sqlite-utils-memory/

●​ Does Datasette need to worry about SQLite’s Defense Against the Dark Arts security
guidelines?

○​ Yes, absolutely! I’ve put a lot of work in there. Most importantly, Datasette
enforces a time limit on queries, which cuts them off if they take more than a
second.

●​ The SQLite3 docs are sometimes light on examples for the tricky stuff (e.g., enabling
WAL). What’s your best sort of info beyond the official docs?

○​ I’ve been publishing my own notes here: https://til.simonwillison.net/sqlite
○​ The SQLite Forum is amazing - I ask questions on there and often get a reply

from the maintainers within a few hours: https://sqlite.org/forum/forummain
●​ From Predrag Gruevski: Regarding learning curve, is a GraphQL web IDE (with syntax

highlighting / autocomplete etc.) sufficiently user-friendly for folks more comfortable with
a spreadsheet than a CLI tool or SQL?

○​ Probably not! GraphQL requires thinking like a programmer too. I’m interested in
helping people who aren’t yet ready to learn any kind of programming language

○​ I have a plugin for Datasette that adds GraphQL with the GraphiQL user interface
- demo here: datasette-graphql-demo.datasette.io

■​ Thanks! Would love to compare notes on this – my experience from
working with analysts at my employer was that they were able to master
GraphiQL very quickly. In a sense, it was more intimidating than actually
difficult, so working with them directly to get them over the initial difficulty
hump via examples and targeted exercises made a huge positive impact.

●​ … your questions here …

Litestream
Ben Johnson @benbjohnson

Litestream adds replication to SQLite, allowing databases to be cheaply replicated to storage
systems such as S3. Litestream also now implements live read-replication, where many read
replicas can be run against a single leader database.

https://simonwillison.net/2021/Feb/7/video/
https://github.com/dinedal/textql
https://simonwillison.net/2021/Jun/19/sqlite-utils-memory/
https://www.sqlite.org/security.html
https://til.simonwillison.net/sqlite
https://sqlite.org/forum/forummain
https://datasette-graphql-demo.datasette.io/graphql/github?query=%7B%0A%20%20issue_comments%20%7B%0A%20%20%20%20totalCount%0A%20%20%20%20pageInfo%20%7B%0A%20%20%20%20%20%20hasNextPage%0A%20%20%20%20%20%20endCursor%0A%20%20%20%20%7D%0A%20%20%20%20nodes%20%7B%0A%20%20%20%20%20%20html_url%0A%20%20%20%20%20%20issue_url%0A%20%20%20%20%20%20id%0A%20%20%20%20%20%20node_id%0A%20%20%20%20%20%20created_at%0A%20%20%20%20%20%20updated_at%0A%20%20%20%20%20%20author_association%0A%20%20%20%20%20%20body%0A%20%20%20%20%20%20reactions%0A%20%20%20%20%20%20performed_via_github_app%0A%20%20%20%20%20%20user%20%7B%0A%20%20%20%20%20%20%20%20id%0A%20%20%20%20%20%20%20%20name%0A%20%20%20%20%20%20%7D%0A%20%20%20%20%20%20issue%20%7B%0A%20%20%20%20%20%20%20%20id%0A%20%20%20%20%20%20%20%20title%0A%20%20%20%20%20%20%7D%0A%20%20%20%20%7D%0A%20%20%7D%0A%7D
https://twitter.com/benbjohnson
https://litestream.io/

https://www.sqlite.org/np1queryprob.html - Many Small Queries Are Efficient in SQLite

Questions about Litestream:

●​ What does the planned hot standby feature look like, especially regarding durability
guarantees during fail-over?

○​ BJ: Hot standby is a tough issue to generalize. The database-as-a-service
version of Litestream that’s coming will handle this but it’s not necessarily
planned for Litestream)

■​ Will DBaaS be hosted, OSS, or both?
●​ It’ll be both

●​ From Longwei Su: I assume offline update will be commit locally then sync with the
online storage. If there is a offline commit that conflict with the online version(that already
committed in). How to resolve the conflict?

●​ Not sure if this relates to Litestream but; how big is sql.js — how much does it cost (in
kilobytes) to load sqlite in the browser?

○​ BJ: I think sql.js is 1.2MB so the cost depends on how much your provider
charges for bandwidth

■​ Thanks! Meant “cost” in the sense of bytes transferred over wire — this
answers it :)

●​ … your questions here …

GraphQL

-​ https://github.com/simonw/help-scraper is scraping GraphQL schemas

Thanks!

https://www.sqlite.org/np1queryprob.html
https://github.com/simonw/help-scraper

	SQLite Happy Hour Twitter Space
	Riffle
	Datasette
	Litestream

