08/30/21

- Dates
- Oct 4: 1 page project proposal due
- Dec 1: Exam (25%)
- Dec 8: Posters/demos (30%)
- Dec 15 4pm: Project report due (20%)
- Weekly homeworks (15%)
- Readings
- Real-Time Systems K Shin’s book
- |IEEE RTSS
- |[EEE RTAS
- ACM/IEEE ICCPS
- International Journal of Time-Critical Computing
- ACM Transactions on Embedded Systems
- ACM Transactions on Cyber-Physical Systems
- Homework
- Read and analyze 2 or more recent papers on topics covered during the
assignment period (4 page long report including references)
- Cover page
- Title of topic, name, e-mail address, date of submission, and brief
summary of articles read
- Analysis and critiques
- Critically analyzed
- If I were the author, what would | do differently?
- References
- Term Projects
- Team of up to 3 total members
- Can use project for research but not as another class
- Literature surveys or slight modifications of existing work not allowed
- Should be publishable

- Trade-offs apply to everything including airplanes, embedded systems, Al
- Efficiency, robustness, usability, security, speed,

- Do a paper presentation

- 5 days to regrade on anything

- Research is defined as creation from nothing or from ill-conceived notions

- Finish PhD feeling like you can do anything

- Class Content
- Real-time systems may be defined by particular granularity of time (ms, s) it
needs to be in before it fails

- Deadlines can come from law of physics or can be artificially imposed
- Soft real-time system is where user is unhappy if not done by a deadline

- Hard real-time system is where system doesn’t work at all if not done by a
deadline

09/01/21

- How fast can you acquire data, process it, and actuate decisions?
- Achieve all 3 steps before the deadline
- For example, cars traveling fast may not be able to stop/react as fast, also
depends on road conditions
- Deadline’s could be random variables as well (or noisy to some degree)
- We digitize/discretize analog signals at a specific frequency (sample interval)
- Sampling theory
- Sample more as car goes faster
- End to end latency is also considered application latency
- How to allocate deadline time to individual components? (deadline
distribution)
- Artificial deadlines created from usability studies
- Provide safety margins where you have to miss many deadlines before failure
- The same task could be hard real-time or soft real-time depending on the state of the
system
- Tasks/messages/packets may be triggered periodically, aperiodically or
sporadically (2 consecutive instances must be infrequent to some minimum)
- Braking is a sporadic task, combined with detecting an obstacle which is periodic
- Typically assume 2 consecutive failures take longer than the recovery time
- Multiple failure before recovery can cause issues
- Lump multiple simultaneous failures as a single failure
- We want to optimize and create adaptive schedules because:
- Computation takes time, generates heat, consumes energy, consumes
bandwidth
- Requirements
- Size, power (heat), weight, radiation/EM hardened
- Performance must be responsive and predictable
- Must be cheap and short time-to-market
- Must be safe, reliable, secure/private

09/03/21

- System state can be handled by external triggers via polling or ISR (interrupt handler)
- Interrupt done between instructions not in the middle of instruction execution
(time consuming [flush cache, save registers, etc.])
- Polling (spinlocks) [better when it'll clear up soon]
- Event and/or time-driven state transitions
- From input to output, you have to go through a series of states
- State can also be considered with the number of processors

- Or CPU is in WAIT, EXECUTE, SUSPEND
- Event driven (conditional), time driven (every n seconds)
- Timing constraints and multi-threading
- Given x at time t1, produce y by t2
- Non-deterministic, race conditions, time-dependent behavior, etc.
- Failures are rooted in interaction of multiple concurrent operations and threads
- RTOS
- Use host and target systems
- Needs to be a good resource manager

A Typical Real-Time Embedded System

Environment

Store of Real-time
Jobs Clock
Trigger
Generator

|

Execution Unit
Processors, Networks
OS, App SW

Displays T

Human
Operators

Green is controlled processes, yellow is the controller
- You can model a lot of things in this manner (humans, cars, internet, etc.)
- Process keeps cycling until mission is complete

09/08/21

- Trends
- Proliferation
- Industrial, RFIDs, sensor networks and ad hoc wireless, medical, smart
spaces and assisted living
- Integration at scale
- Lowend
- Sensor networks, world wide sensor web

- Ubiquitous embedded devices, large scale networked embedded
systems, seamless integration with a physical environment
- High end
- Power grids, navy ships, global information grid
- Complex systems with global integration
- Biological evolution
- Exponential proliferation of embedded devices (Moore’s law) is not
matched by an increase in human ability to consume information
- Increasing autonomy (human out of the loop)
- These trends all come together to a distributed cyber-physical information
distillation and control systems (of embedded devices)
- Electric Vehicles as an example
- Components are all independent so turning off the car doesn’t turn off parts
- Power system in EVs
- Powertrain, AC, radios, window lift, sunroof control (must need
communication and control)
- Cyber physical coupling. There should be cyber capabilities in every
physical components (large scale wired and wireless networking)
- System of systems has spatial-temporal constraints (dynamically
reorganizing/reconfiguring)
- Also has security and privacy needs
- Control loops keep looping (must close loop, example loop time 1 ms)
- High automation
- Electric power grids
Equipment protection devices trip reactively and locally
Cascading failure (2003)
Real-time cooperative control of protection devices
Self healing islands of stable bulk power
- Issue: conventional operational control concerns for bulk power stability and
quality, flow control, and fault isolation
Context: market behavior, power routing transactions, regulations
Disposing extra electricity is non-trivial
- Health care and medicine
- Medical records at any location
- Pulse oximeters, blood glucose monitors, insulin, fall detection
- Operating room should be closed loop monitoring and control, plug and play,
robotic microsurgery

09/10/21

- Sporadic tasks
- Hard deadline
- Highly critical task
- Executed whenever there’s time

Rejected by scheduler if there’s less slack time
Deadlines are met easily

- Aperiodic tasks

Soft deadline

Low or moderate critical task

Execution doesn’t depend on available slack time
Never rejected by scheduler

Meeting all deadlines is difficult

- Each task has a priority depending on the scheduler

09/13/21 - CPS

- Grand visions

Near-0 automotive traffic fatalities, minimal injuries, reduced traffic congestion
and delays

Blackout-free electricity

Perpetual life assistants

Extreme-yield agriculture

Energy-aware buildings

Location-independent access to world-class medicine

Physical critical infrastructure that calls for preventive maintenance
Self-correcting and self-certifying cyber-physical systems

Reduce testing and integration time of complex CPS

- Example: Battery awareness

Don’t want to overcharge battery

- Potential accidents

Unsound interconnections

Feature interactions that are unanticipated
Inadequate development infrastructure
System instabilities

- Interaction modes

Computation resources
Shared resources
Controlled plant
Human operators
Larger environment

- Formal methods

09/15/21

Instead of testing or simulation, uses automated model checking, theorem
proving, static analysis, run-time verification
Exponential complexity:

- Best when property is simple or system is small/abstract

- Model rather than C-code

- Characterizing RTES
- How to measure “goodness” of RTES?
- How to estimate exec time of a program given source code and target
architecture?

Which System Is Better?

Systemn B

Aysusp "qoid

Completion time

Execution time
- A
Predictability
- B
aM+bV, or (M, V)
- weighted sum of mean response time and variance
How do we rank the two?
- How to measure RTES performance
- MIPS?
- No, depends on architecture (RISC = 1/1.2 clock cycles) (CISC = 1/1.8
clock cycles)
- Want RTS performance measure to:
- Be efficient encoding of relevant information
- Be objective means for ranking candidate systems for an application
- Represent verifiable facts

- Performance measures
- Reliability: R(t)
- Availability: A(t)
- Throughput
- Capacity reliability
- Probability of not being in any failure states
- Computational reliability
- Probability system can start task T at time t and in state s
- Performability
- Given n accomplishment levels, performability is where probability
the computer functions to allow the controlled process to reach
accomplishment
- A1,A2, ..., Anand P(A1), P(A2), ..., P(An)
- Hierarchical format
- Accomplishment levels
- Accomplishment of controlled-process tasks
- Capacity of RTES to execute specified algs for control
tasks
- HW structure, OS, application SW
- Cost functions and hard deadlines
- Hard deadlines are the maximum controller “think” time that will allow controlled
process to be kept in a stable state space
- Cost of the response time C(r) = P(r) - P(0)
- Where P(r) = performability associated with response time r
- Hard deadline keeps deviations within a specified bound
- Task execution times
- Depends on source code, compiler, machine architecture, OS
- Need an ideal tool which takes in all these factors and outputs a task execution
time
- Analyze straight-line source code
- Estimate execution time of each microinstruction
- What about loops and conditional branches?
- Depends on input data, interrupts,
- Difficult to estimate task execution time
- Difficult to determine # times an instruction will be executed
- Time to execute instructions is not constant
- Depends on pipelining, out of order execution, cache, branch
prediction, multiple instructions per clock cycle, multiple cores on a
single die
- Instruction execution time depends on instruction, data, and state of
machine
- Modeling concurrent task execution in a distributed real-time control computer system

09/17/21

Execution time analysis

- Hard real-time constraints/deadlines

- Soft real-time constraints/deadlines

- No set execution deadline for a given task

- Isthere aruniforwhicht run,i>t d?

- Worst case execution time analysis

Path analysis

- for (i=0; i<100; i++) {

if rand() > 0.5
j+H;
else
k++;

}
- 2M00 feasible paths

- Cannot enumerate all possible paths
- Analytical approach required
Count analysis
- Basic block
- Sequence of instructions which are all executed if the 1st one in the
sequence is executed
- Block with no branches or loops

- Steps
- Divide program into basic blocks
- Determine execution time of each block
- Determine possible number of executions for each basic block
- Maximize sum of execution time * # executions for each basic block
- x1 k=0;
x2 while(k<10){
x3 if(ok)
x4 it
x5 else{
j=0;
ok=true;
}
x6 k++;
}

- Can design a control flow graph (CFG) to draw a graph from code
- Draw arrows for where the code goes, for each block as a node
Integer linear programming formulation
- Structural and logical constraints build a set of equations
- Maximize sum obeying to all constraints
- Objective function is linear and all constraints are linear expressions
- ILP solver is guaranteed to determine the extreme case solution

- Chronos
- ILP techniques for caches
- Memory hierarchy pyramid (processor -> registers -> caches -> RAM, main
memory)
- Cache hits / cache misses
- 2 different execution times
- c™hit, c*miss
- X"hit, x*miss
- Sum of c*hit * x*hit + c*miss * x*miss
- Assume direct mapped caches
- Line blocks
- Basic blocks can content several instructions mapped to different cache lines
- Would have to grab memory from different cache lines
- Execution times differ depending on program structure
- Contiguous sequence of code within same basic block that's mapped to the
same cache line in the instruction cache
- B 41 B4,2
- Basic blocks to line blocks
- Draw a table, look at number of cache sets
- 0,1,2,3
- B 1andB_ 3,B 1andB_3,B 1andB 2,B 2
Can group together 0 and 1 because their blocks are the same
- Whenever you hit a line block for the 1st time, it'll always result in a miss
Any 2 I-blocks that map onto the same cache set are called conflicting if they
have different address tags
- 2 non-conflicting I-blocks are mapped to the same cache line
Sum of basic blocks (sum of line blocks)
- c™hit * x*hit + c*miss * x*miss
- Cache conflict graph
- For each cache set containing 2 or more conflicting |-blocks
- Start node, end node, and node B_k.I for every I-block in the cache set
- Edge from B_k.l to B_m.n: control can pass between them without passing
through any other I-blocks of the same cache set
- Start node, end node
- Put nodes for each line block in the cache set

09/20/21

- Pipelining and caches
- Fetch -> decode -> operand fetch -> execute -> result store
- 5 concurrent instructions in execution
- Timing complexity because of data inter-dependencies, branches, interrupts
- Caches fix speed disparity b/w CPU and memory
- Smarter cache avoids misses, divide into exclusive and shared areas

- What about virtual memory for real-time systems?
- Page faults (item isn’t in memory, have to fetch from disk)
- Control speculation (branch prediction)
Execution time of concurrent tasks
- Many CPS and RTES require multiple dependent tasks to run concurrently (not
just single threaded)
- Need to model concurrent tasks for their execution times and scheduling
- Model must simultaneously consider both processing architecture (platform) and
tasks (application)
System model
- Platform architecture
- Processing node architecture, registers, pipelines, caches
- Operating system
- Networking protocols
- Task system
- Application
- Assignment (tasks)
- Scheduling (modules or activities)
- Activities are modeled by Generalized Stochastic Petri Nets (GSPN)
which are converted to Continuous-Time Markov Chains (CTMC)
- Markov chain -> math -> execution time prediction
- Precedence constraints on tasks
- Key to capturing dependencies between tasks
Application modeling
- Task-oriented: too coarse to capture details
- Module-oriented: difficult to study
- Message scheduling policies
- Communication protocols
- Task execution stage of each PN
- Approach
- Contiguous stretches of code are combined into activities without losing
precedence constraints and avg/worst execution times
- GSPN -> sequence of CTMCs to model task system evolution
- Task flow graph
- Chain, AND-FORK & AND-JOIN, OR-FORK & OR-JOIN, Loop
- OR doesn’t wait for late branches, AND does wait
- Can construct any program using these 4 components
- Can build a task tree to describe this task flow graph (TFG) with 4
subgraphs
Definitions
- Module: combination of 2 or more code stretches or modules
- Activity: largest module that can be formed without violating precedence
constraints
- Marked Petri Net: C = (P,T,1,0,u) where u : P-># of tokens for place p in P

- P is set of places
- T is set of transitions
- lisinput
- Oisoutput
- uis tokens (mapping indicating progress of execution [board game
token))
- GSPN: marked Petri Net with a nonnegative random firing delay for each
transitiontin T
- Example: SEND-RECEIVE-REPLY, REQUEST-RESPONSE, WAITFOR
- Mert notes
- Sum of control flows going into a node should be equal to the sum going out of a
node
- If you have self-loops in your control flow graph, it always represents a cache hit
- If you have a transition between 2 conflicting I-blocks will always result in a cache
miss
- Read “Cache Modeling for Real-time Software: Beyond Direct Mapped
Instruction Caches”

09/22/21

- Step through the GSPN model token-by-token
- There may be probabilities for each transition
- Ifthere’s a deadlock in the GSPN, it'll just timeout at (5ms) so no one cares
- Continuous time markov chain
- If there’s and end state involved, it could be time-critical

09/24/21

CCG Example 1

Assignment:
Draw the CCG for
turquoise cache
set.

Cache

- Look at each conditional branch and draw the flow
- Label edges, nodes

Execution Counts

Cache Constraints:

* Only first execution of I-block has
* Self-loops to a node denote guaranteed cache hits| cache miss

* le,xy"=1 * Eg.,x,"*=1
* Any two I-blocks that map onto

Pk
the same cache set are called
Represents __—— conflicting if they have different
cache hit address tags

* Two non-conflicting I-blocks are
mapped to same cache line

* Transition between conflicting I-blocks will result in cache miss

* X = Zu,vp(u,v,i,j)

« Total WCET time now given as: Y. Z?i(ci’}}txi”‘]‘-t + ¢SS xS

- Transition between conflicting I-blocks will result in cache miss
- Sum of edges going into it (or out of it)
- Assume entire cache is empty before starting
- c_ijis execution time of each line block, x_ij is number of executions of each line
block
- CFG to identify I-blocks
- CCG to identify cache constraints

09/27/21

Will real-time application really meet its timing constraints?
- Feasible/optimal
- Release time
- (absolute, relative, effective) deadlines/release-times
- Precedence relation
- Set of tasks that must be completed before task T can begin its execution
- Resource requirements
- Processor, memory, bus, disk
- Can either be exclusive or shared (read-only, read-write)
- Schedule
- Offline or online
- Sometimes you don’t know all data required for
computational workload in advance
- Examples could be interrupts or unexpected events
- Sometimes priority is static or dynamic
- Another task might preempt its execution (taking over priority of
execution)
- Uni-processor or multi-processor
- More terminology
- Hard deadline (late result has little/no value or leads to catastrophe)
- Soft deadline (late result can still be useful)
- Tardiness
- Min(0, deadline - completion time
- Utility
- Function of tardiness
- Release time
- Could be a fixed release time or there could be jitter/noise
(sporadic or aperiodic)
- Ajob can be released later than that of its successor
- Execution time
- Unpredictable due to memory refresh, DMA, pipelining, cache
misses, interrupts, OS overhead, execution path variations, etc.
- WCET
- A deterministic parameter for the worst case
- Conservative measure, an assumption to make scheduling
feasible
- Job
- Deadline of a job can be earlier than that of its predecessor
- Effective release time = max(release time, effective release time of all
predecessors)
- Effective deadline = min(deadline, effective deadline of all successors)
- These are recursive definitions (if no successor/predecessor,
effective = deadline/release)

- Rate monotonic (RM): statically assign higher priorities to tasks with
smaller periods

- Deadline monotonic (DM): the smaller the relative deadline, the higher the
priority

- Earliest deadline first (EDF): the earlier the deadline, the higher the
priority (this is optimal if preemption is allowed and jobs don’t contend for
resources)

- Maximum laxity first (MLF): the smaller the laxity, the higher the priority
(also optimal)

- Laxity is the laxness of your time to execute something (deadline -
execution time) - right now

09/29/21

- Utilization is the fraction of execution time over the period
- u=elp
- High priority task should preempt the low priority tasks (priority inversion)

10/01/21

- Clock driven
- Static or off-line scheduling (calculated a priori)
- Decision is made at a priori at chosen time instants
- Uses a hardware timer and no OS
- Regularly spaced time instants
- Schedule is computed off-line and stored for use at run-time
- All parameters of hard real-time jobs must be fixed and known
Scheduling overhead during run time is minimal
Complexity of scheduling algorithm is not important
Good schedules can be found
Disadvantage: no flexibility
- nperiodic tasks, tau, to tau,
- Task is specified with phi, T, C, D (task phase, task period, execution time,
deadline)
- Shortened to T, C (period, execution time)
- Only 1 processor
- Schedule table
- Occasionally CPU will be idle and no task is scheduled (x)

T1 T2 T3 T4

Period 4 5 20 20

Execution 1 1.8 1 2
time

Time |0 1 2 3.8 |4 5 6 8 9.8

Task | T1 T3 T2 X T1 X T4 T1 X

ey ey ‘H n | n [H T__,‘ schedule repeats
11 | |

| T 1]
- 0 2 Bl 6 8 10 12 14 16 18 20
- Only show for the Least Common Multiple of period (20)
- Frame-based scheduling
- Problems: big number of tasks, big schedule table, embedded systems
have limited memory, reprogramming timer might be slow
- Idea
- Divide time to constant-size frames
- Combine multiple jobs to a single frame
- Scheduling decisions made only at frame boundaries
- Downsides
- No preemption, each job must fit in frame, schedule calculation +
various error conditions (task overrun)
- fis frame size, how to select ?
- Constraints
- we want big enough frames to fit every job without
preempting it
- f>=max(C) fori=1,...,n
- In order to have a small table, f should divide H. Since H =
LCM(T,,...,T,), f divides T, for at least one task T,
- Let F = H/f (F is integer).
- His called major cycle and f is minor cycle
- We want frame size to be small so there is at least 1 frame
between task release time and deadline
- 2f-GCD(T, f) <= D,
- deadline fori
- Summary
- H=LCM(T,,....,T,)
- f>=max(C) fori=1,...,n
- fshould divide H
- 2f-GCD(T, f) <= D
- How to find f?
- Start with f >= max(execution time)
- Then find f’s that divides H
- Finally, check each GCD equation value for each of these
- 3 tasks (in helicopter control system)

- 180x per second, computation time 1 ms
- 90x per second, computation time 3 ms
- 30x per second, computation time 10 ms

Hard real-time jobs have a hard deadline, doesn’t matter if it's done early
Always schedule aperiodic jobs at the beginning (interrupt based first)
Slack stealing

10/04/21

There are periods of idle time on the CPU

Without slack stealing, do periodic hard tasks first and then fill in

With slack stealing, can move periodic hard tasks later and prioritize the
aperiodic jobs

3 big questions

Where am |?
- GPS + digital maps
Where to go?
- Mission/route planning
What's around me?
- 360 sensing
Sensor types
- GPS, LIDAR, Images, CAN, WIFI/5G, Integrated Display, Ultrasonic
Sensors, Full-operational Arch, Multicore, FPGA, FlexRay, Ethernet,
DSRC

Need to do the above with large volume, long operation time, uncertain operation
environment, reliably and safely, mixed traffic
SAE levels

0: No automation

1: Driver assistance

2: Partial assistance

3: Conditional automation

- From here an above, any issues are human fault (human final decision)

4: High automation
- From here beyond, any issues are manufacturer’s fault
5: Full automation

Most things we talk about are level 4+
AV system components

Environment sensing -> perception and planning -> motion control and vehicle

operation
Needs to be performant, safe, and affordable

Approach for automated driving

L5 (gradually pull back to lower level)
- Object detection

- Multi LIDARS and multi cameras and detailed HD map
- Working environment
- Day + night with rain and snow
- Image annotation
- Semi-automatic with human assistance
- Training technique
- No pre-training/reinforced learning
- Limitations
- Works better on predefined routes
L1/L2/L3/L4 (gradually grow to higher level)
- Object detection
- Single camera and multi radar sensors
Working environment
- Daytime with bright light
Image annotation
- Manual annotation by human
Training technique
- Supervised training
Limitations
- Fallback to human driver

AV cost
- $%$, space, driving range, warranty, maintenance
Perception
- Camera, LIDAR, Radar
- Different advantages
- Camera (Best sensor for color and texture interpretation)
- LIDAR (High precision detection without light/sound
interference)
- Radar (Cost effective, good as backup sensor)
- Different disadvantages
- Camera (High processing required)
- LIDAR (Needs HD map, requires huge amounts of data,
expensive)
- Radar (Poor resolution, 2D information only)
- Processing
- Algorithms
- HOG, sobel, SVM
- Alexnet, Squeezenet, SSD, YOLOv3
- Optical flow, ORB
- Timing characteristics
- Constant execution time
- Need to detect multiple at once
- Tradeoff between processing delay and accuracy

- Some algorithms can do it fairly well with small
amount of time, can possibly spend longer to
compute higher accuracy result

- Single frame processing delay - batch processing may be
limited
- Time synchronization among multiple sources
- Hardware computing platform
- Multicore, many-core, accelerators (DSP, GPU, FPGA)
- Challenges
- High performance, high computation, safe and secure, affordable,
optimization with large number of parameters
- Focus on vision
- Vision processing are main components posing challenges
- Lidar processing shares challenges (less computation
load)
- Radar is light computing workload
- Deep learning / neural network for vision processing
- Inference of pre-trained CNN
- Special cases for adaptive learning or reinforcement
learning
Development process
- Algorithm developed on machine -> portable across different computing
platforms -> enable system level optimization and analyzability -> meet
requirements on timing, safety, security
Solution concepts
- Objective: run a CNN inference algorithm effectively and efficiently
- Computation reduction
- Quantization (32bit -> 16bit) and pruning
- Can binarize CNN (use bit operations instead of floating
point precision)
- Selective processing
- Crop regions of interests
- Use camera to guide LIDAR
- Architecture optimization
- Hardware acceleration

- Multi-core CPU

- GPU

- FPGA

- TPU

- Parallel processing
- Device sharing
- Multiple vision applications using different resources
- Need to synchronize using locks
Preemptable CNN

- Meaningful result only retrieved at the end of the process
- Models get more complex with more layers

- Easy to schedule if preemptable

- Deal with different levels of CNN importance/criticality

- Desired CNN with fine-grain execution control

10/06/21

- Schedules
- Earliest deadline first (EDF) schedule
- Preemptive dynamic priority scheduling
- Job with earliest deadline has priority
- Non-preemptive or multiple processors is non-optimal
- Least slack time (LST)
- Preemptive priority scheduling based on slack time (deadline - execution
time)
- Optimal for preemptive single processor schedule
- Schedule anomaly
- The schedule fails even after we reduce job execution times
- Preemptive is much easier than non-preemptive scheduling
- Aperiodic tasks
- A periodic server follows the cyclic schedule and looks at aperiodic task queue
- Slack stealing
- Slack time is how much each periodic task can be delayed
- Assume all tasks must be completed before the end of their frames and
aperiodic tasks are not preemptable
- Do slack stealing at beginning of each frame and examine queue when
idle
- Scheduling goal
- No deadlines missed for all jobs invoked by a set of periodic tasks
- Scheduling algorithm
- Determines when to execute a task (EDF, RM)
- Schedulability analysis
- Guarantee no deadline misses of a given task under a scheduling algorithm
- Real-time scheduling
- Assumptions
- Single processor
- Hard deadline
- Independent periodic tasks
- Relative deadline = period
- Preemptable without any limit
- No overhead for context switch
- Why should you start with a simple theoretical model?
- Shannon for example started with a useless impractical simple model

- After solving the simple model, he started adding complexity back into the model,
one by one
- Priority-driven scheduling
- Task-level fixed-priority (TFP): all jobs of periodic task have the same fixed
priority
- RM (rate-monotonic)
- Task-level dynamic-priority: different priorities to individual jobs of a periodic task
- Job-level fixed-priority (JFP): priority of each job is fixed
- EDF (earliest deadline first)
- Job-level dynamic-priority (JDP): priority of each job can change over time
- LSTF (least slack time first)
- In analysis, what is the maximum utilization (rather than time)
- Execution time / period

10/13/21

- Rate monotonic (RM)
- Ajob is encountering worst-case (critical instant)
- Shift each task so that its first job is released at t, just shifting the arrival
times
- If you can meet the job at the critical instant, then you can meet it in all cases
- Utilization based analysis
- Using CPU at 69.3%, you will be guaranteed to meet all jobs across a
task set
- U<=n(2*1/n)-1.0)-> 0.69
- Calculate least upper bound of processor utilization
- This is a sufficient condition, not a necessary condition
- Example for 2 tasks
- n=tasks, p = periods, t = tasks, e = execution times, U =
utilization
- if n=2, solve the equation and = 0.828
- Letp2 < 2*p1
- Determine the maximum schedulable e2
- p2<=p1+el, max(e2)=p1-e
- p2isin|[p1, 2*p1]
- Trying to have maximum job execution time without missing deadlines
- Minimum U occurs when p2 = p1 + e1, where U = e1/p1 +
(p1-e1)/(p1+e2)
- Can take the derivative for p1 and set (partial derivative) dU/dp1 =
0
- We get e1=(2*(’2)-1.0)p1 and U=0.828
- If total utilization is less than utilization upper bound function, then we're
all good
- Execution time / period = utilization (.753)

10/15/21

- Round robin

- 753 <.779

Response-time analysis

an.1=e+sum(a,/p))e;
Test terminates when a,., = a,
n tasks, testing schedulability of each task
- Go down the line of tasks by priority and whether they’re
schedulable (assuming unlimited preemption)
a, is estimation of response time or completion time (sums of higher
priority tasks) of task i
Task i is schedulable if its response time is before its deadline:
- a, <= Pi
- a,is the response time of T,
e1=40,e2=40,e3 =100, p1 =100, p2 = 150, p3 = 350
- @, =sum(e) = es+e,+e; = 180
- a,;=100 + 180/100(40) = 180/150(40) = 100 + 80 + 80 = 260
- a,=e¢ +sum(a/p)e; = 100 + 260/100(40) + 260/150(40) = 300
- az;=100 + 300/100(40) + 300/150(40) = 300
This works because time-demand analysis is based on the critical instant
- If J;is done at t, then the total work must be done in [0,t] is (from J;
and all higher priority tasks):
- wi(t)=e+sum(tpy)ex

Similar to FCFS scheduling
CPU bursts (execution) assigned with time quantum
Advantages

Fairness equal share of CPU

New created process added to end of queue

Time sharing, each job/time slot has time quantum
Each process has a chance to reschedule

Disadvantage

Metrics

Low throughput

Larger waiting time and response time
Context switches

Gantt chart becomes very big

Small quantums = time consuming

Completion time

- Time when process completes its execution
Turnaround time

- Time difference between completion time and arrival time
Waiting time

- Time difference between turnaround time and burst time

Rate-monotonic (RM)

- Higher period frequency is higher priority task for RM

- Response time analysis
- Exact test, use if upper bound test is indeterminate
- One analysis per task

- Stop conditions
- Deadline violation R, > D; = p;
- Convergence R,q(m+1) = R,q(m)

RM Example 1
T, Pi €
1 2 0.5
2 3 0.5
3 6 2
- U=05/2+0.5/3+2/6=0.75
- U@B)=0.779
- 0.75<0.779
- Sufficient, tasks are schedulable
RM Example 2
T, o €
1 2 0.5
2 3 0.5
3 6 3
- U=0.92
- U@)=0.779
- 092>0.779

- Is T, schedulable?
- R,i(0)=C;=05<=2
- Is T, schedulable?
- chz(o) = C1 + CZ =1
Rue2(1) = ceil(R,(0)/T,) *C; + C, =ceil(’2) * 0.5+ 0.5=1
- Converged, 1<=3
- Is T; schedulable?
- Rus(0)=C;+C,+C3=05+05+3=4
- Rues(1) = ceil(Rucs(0)/T1) * Cy + ceil(Rye3(0)/T,) * Cy + Cs =
- ceil(4/2)* 0.5 + ceil(4/3) *0.5+3=5.5
Rues(2) = ceil(Rucea(1)/T) * Cy + ceil(Rues(1)/T2) * Co + C3 =

- 55
- Converged, 5.5<=6

- RM Example 3
T, &
3 1
4 1
6 2.1
- 0.93>0.779

- Rue(1) = ceil(Rye3(0)/T4) * C; + ceil(R,3(0)/T,) *C, + C3=6.1
- 6.1 > 6, deadline violation
- Number 6 don't try to derive the equation from the original RM equation

10/20/21

- RM Transient Overload
- If task with lower period is not critical to the underlying application
- To deal with this, consider period transformation, period aggregation, or period
splitting
- Could drop the task altogether, but this is non-desirable
- Replace the problematic task with 2 tasks, each with 2x original period
- RM Schedulability With Interrupts
- Interrupts should receive higher priority than application
- Interrupt handler executes higher priority irrespective of its period
- Interrupt processing can delay execution of app tasks with shorter periods
- This interrupt processing must be accounted for in the schedulability model. How
to change the UB test?
- UB test with interrupt
- Testis applied to each task
- Determine effective utilization (f;) of each task i using:
- Sumgpy,(ei/p) + efpi + 1/p; " Sumy(ey)
- Compare effective utilization (f;) to bound U(n)
- n=num(H, + 1) where num(H,) = number of tasks in set H,
- H, is the set of tasks that will preempt current task more than once
with period less than D
- H,is the set of tasks that preempt current task only once with
period greater than D,
- Priority inversion
- Delay to a task’s execution is when blocking occurs from lower-priority tasks
- If the tasks share the same resources, this can happen
- We need to identify and evaluate sources of priority inversion
- Sources

- Synchronization and mutual exclusion (mutex locks)
- Non-preemptable regions of code
- FIFO queues
How to deal with priority inversion in schedulability analysis
- Task schedulability is affected by:
- Preemption: 2 types
- Occurs several times per task period OR
- Occurs once per period
- Execution: Once per period
- Blocking: At most once per period for each resource
Schedulability formulas are modified to add a “blocking” or “priority inversion”
term
Response time analysis with blocking
- an =B+ e+ Sum(a./p)e
- Perform test as done before, including blocking effect
- Where a, = B; + Sum(g,)
Example
- Where data structure is 30 msec to access
- Ts;just enters the critical section, then T, preempts T while T, is still
waiting for the data structure, so T, must wait for T, to finish its

computation
Task Period Execution | Priority Blocking [Deadline
Time Delay
T, 100 25 High 30+50 100
T, 200 50 Medium 0 200
Ts 300 100 Low 0 300

- f,=e4p, +By/p, =25/100 + 80/100 = 1.05
- 1.05>1.00, not schedulable

- f,=epy+elp,=0.5
- 0.5<U(2)

- fy=eps+elp, +es/p;=0.84
- 0.84>U(3)

- Higher priority task is not always more schedulable than lower priority

tasks because of this
EDF schedulability analysis
- EDF is schedulable iff U <= 1.0

10/27/21 - Priority Inversion

Usually use mutex locks
Priority inversion occurs with shared resources or critical section

High priority task wants to access locked resource, but it has to wait since low priority
task has locked it

Low priority task runs for a bit

Then medium priority task preempts it

Low priority task finishes and unlocks the resource
Finally high priority task can run

Normally, priority inversion is not harmful

But it could cause serious problems

Mars Pathfinder

Landed on Mars on July 4th 1997
Surface operations, daily images of Mars, daily weather reports from surface of
Mars
On July 12th, there were technical problems (communication errors)
On July 19th, the problem was solved
Turns out, a CTO of the RTOS for Pathfinder said that there was a priority
inversion problem
Pathfinder had 3 tasks:
- Ty information bus task (short, frequent, quick responses)
- Ty communication task (sending pictures to Earth)
- T.: meteorological task (long task)
- Ty had to wait very long because of priority inversion
- Usually you build a timeout mechanism to do a total system reset

You can drive any system to an unknown state (digital upset) which causes a total
system reset

Timeout based reset mechanism can be exploited

Solution is a priority inheritance protocol or priority ceiling protocol

