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-​ Dates 
-​ Oct 4: 1 page project proposal due 
-​ Dec 1: Exam (25%) 
-​ Dec 8: Posters/demos (30%) 
-​ Dec 15 4pm: Project report due (20%) 
-​ Weekly homeworks (15%) 

-​ Readings 
-​ Real-Time Systems K Shin’s book 
-​ IEEE RTSS 
-​ IEEE RTAS 
-​ ACM/IEEE ICCPS 
-​ International Journal of Time-Critical Computing 
-​ ACM Transactions on Embedded Systems 
-​ ACM Transactions on Cyber-Physical Systems 

-​ Homework 
-​ Read and analyze 2 or more recent papers on topics covered during the 

assignment period (4 page long report including references) 
-​ Cover page 

-​ Title of topic, name, e-mail address, date of submission, and brief 
summary of articles read 

-​ Analysis and critiques 
-​ Critically analyzed 

-​ If I were the author, what would I do differently? 
-​ References 

-​ Term Projects 
-​ Team of up to 3 total members 

-​ Can use project for research but not as another class 
-​ Literature surveys or slight modifications of existing work not allowed 
-​ Should be publishable 

-​ Notes 
-​ Trade-offs apply to everything including airplanes, embedded systems, AI 

-​ Efficiency, robustness, usability, security, speed,  
-​ Do a paper presentation 
-​ 5 days to regrade on anything 
-​ Research is defined as creation from nothing or from ill-conceived notions 
-​ Finish PhD feeling like you can do anything 

-​ Class Content 
-​ Real-time systems may be defined by particular granularity of time (ms, s) it 

needs to be in before it fails 
-​ Deadlines can come from law of physics or can be artificially imposed 
-​ Soft real-time system is where user is unhappy if not done by a deadline  



-​ Hard real-time system is where system doesn’t work at all if not done by a 
deadline 
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-​ How fast can you acquire data, process it, and actuate decisions? 
-​ Achieve all 3 steps before the deadline 
-​ For example, cars traveling fast may not be able to stop/react as fast, also 

depends on road conditions 
-​ Deadline’s could be random variables as well (or noisy to some degree) 
-​ We digitize/discretize analog signals at a specific frequency (sample interval) 

-​ Sampling theory 
-​ Sample more as car goes faster 

-​ End to end latency is also considered application latency 
-​ How to allocate deadline time to individual components? (deadline 

distribution) 
-​ Artificial deadlines created from usability studies 

-​ Provide safety margins where you have to miss many deadlines before failure 
-​ The same task could be hard real-time or soft real-time depending on the state of the 

system 
-​ Tasks/messages/packets may be triggered periodically, aperiodically or 

sporadically (2 consecutive instances must be infrequent to some minimum) 
-​ Braking is a sporadic task, combined with detecting an obstacle which is periodic 

-​ Typically assume 2 consecutive failures take longer than the recovery time 
-​ Multiple failure before recovery can cause issues 
-​ Lump multiple simultaneous failures as a single failure 

-​ We want to optimize and create adaptive schedules because: 
-​ Computation takes time, generates heat, consumes energy, consumes 

bandwidth 
-​ Requirements 

-​ Size, power (heat), weight, radiation/EM hardened 
-​ Performance must be responsive and predictable 
-​ Must be cheap and short time-to-market 
-​ Must be safe, reliable, secure/private 
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-​ System state can be handled by external triggers via polling or ISR (interrupt handler) 
-​ Interrupt done between instructions not in the middle of instruction execution 

(time consuming [flush cache, save registers, etc.]) 
-​ Polling (spinlocks) [better when it’ll clear up soon] 
-​ Event and/or time-driven state transitions 

-​ From input to output, you have to go through a series of states 
-​ State can also be considered with the number of processors 



-​ Or CPU is in WAIT, EXECUTE, SUSPEND 
-​ Event driven (conditional), time driven (every n seconds) 

-​ Timing constraints and multi-threading 
-​ Given x at time t1, produce y by t2 
-​ Non-deterministic, race conditions, time-dependent behavior, etc. 
-​ Failures are rooted in interaction of multiple concurrent operations and threads 

-​ RTOS 
-​ Use host and target systems 
-​ Needs to be a good resource manager 

 
Green is controlled processes, yellow is the controller 

-​ You can model a lot of things in this manner (humans, cars, internet, etc.) 
-​ Process keeps cycling until mission is complete 
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-​ Trends 
-​ Proliferation 

-​ Industrial, RFIDs, sensor networks and ad hoc wireless, medical, smart 
spaces and assisted living 

-​ Integration at scale 
-​ Low end 

-​ Sensor networks, world wide sensor web 



-​ Ubiquitous embedded devices, large scale networked embedded 
systems, seamless integration with a physical environment 

-​ High end 
-​ Power grids, navy ships, global information grid 
-​ Complex systems with global integration 

-​ Biological evolution 
-​ Exponential proliferation of embedded devices (Moore’s law) is not 

matched by an increase in human ability to consume information 
-​ Increasing autonomy (human out of the loop) 

-​ These trends all come together to a distributed cyber-physical information 
distillation and control systems (of embedded devices) 

-​ Electric Vehicles as an example 
-​ Components are all independent so turning off the car doesn’t turn off parts 
-​ Power system in EVs 

-​ Powertrain, AC, radios, window lift, sunroof control (must need 
communication and control) 

-​ Cyber physical coupling. There should be cyber capabilities in every 
physical components (large scale wired and wireless networking) 

-​ System of systems has spatial-temporal constraints (dynamically 
reorganizing/reconfiguring) 

-​ Also has security and privacy needs 
-​ Control loops keep looping (must close loop, example loop time 1 ms) 

-​ High automation 
-​ Electric power grids 

-​ Equipment protection devices trip reactively and locally 
-​ Cascading failure (2003) 
-​ Real-time cooperative control of protection devices 
-​ Self healing islands of stable bulk power 
-​ Issue: conventional operational control concerns for bulk power stability and 

quality, flow control, and fault isolation 
-​ Context: market behavior, power routing transactions, regulations 
-​ Disposing extra electricity is non-trivial 

-​ Health care and medicine 
-​ Medical records at any location 
-​ Pulse oximeters, blood glucose monitors, insulin, fall detection 
-​ Operating room should be closed loop monitoring and control, plug and play, 

robotic microsurgery 
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-​ Sporadic tasks 
-​ Hard deadline 
-​ Highly critical task 
-​ Executed whenever there’s time 



-​ Rejected by scheduler if there’s less slack time 
-​ Deadlines are met easily 

-​ Aperiodic tasks 
-​ Soft deadline 
-​ Low or moderate critical task 
-​ Execution doesn’t depend on available slack time 
-​ Never rejected by scheduler 
-​ Meeting all deadlines is difficult 

-​ Each task has a priority depending on the scheduler 
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-​ Grand visions 
-​ Near-0 automotive traffic fatalities, minimal injuries, reduced traffic congestion 

and delays 
-​ Blackout-free electricity 
-​ Perpetual life assistants 
-​ Extreme-yield agriculture 
-​ Energy-aware buildings 
-​ Location-independent access to world-class medicine 
-​ Physical critical infrastructure that calls for preventive maintenance 
-​ Self-correcting and self-certifying cyber-physical systems 
-​ Reduce testing and integration time of complex CPS 

-​ Example: Battery awareness 
-​ Don’t want to overcharge battery 

-​ Potential accidents 
-​ Unsound interconnections 
-​ Feature interactions that are unanticipated 
-​ Inadequate development infrastructure 
-​ System instabilities 

-​ Interaction modes 
-​ Computation resources 
-​ Shared resources 
-​ Controlled plant 
-​ Human operators 
-​ Larger environment 

-​ Formal methods 
-​ Instead of testing or simulation, uses automated model checking, theorem 

proving, static analysis, run-time verification 
-​ Exponential complexity: 

-​ Best when property is simple or system is small/abstract 
-​ Model rather than C-code 
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-​ Characterizing RTES 
-​ How to measure “goodness” of RTES? 
-​ How to estimate exec time of a program given source code and target 

architecture? 

-​  
-​ Execution time 

-​ A 
-​ Predictability 

-​ B 
-​ aM+bV, or (M, V) 

-​ weighted sum of mean response time and variance 
-​ How do we rank the two? 

-​ How to measure RTES performance 
-​ MIPS? 

-​ No, depends on architecture (RISC = 1/1.2 clock cycles) (CISC = 1/1.8 
clock cycles) 

-​ Want RTS performance measure to: 
-​ Be efficient encoding of relevant information 
-​ Be objective means for ranking candidate systems for an application 
-​ Represent verifiable facts 



-​ Performance measures 
-​ Reliability: R(t) 
-​ Availability: A(t) 
-​ Throughput 
-​ Capacity reliability 

-​ Probability of not being in any failure states 
-​ Computational reliability 

-​ Probability system can start task T at time t and in state s 
-​ Performability 

-​ Given n accomplishment levels, performability is where probability 
the computer functions to allow the controlled process to reach 
accomplishment 

-​ A1, A2, …, An and P(A1), P(A2), …, P(An) 
-​ Hierarchical format 

-​ Accomplishment levels 
-​ Accomplishment of controlled-process tasks 
-​ Capacity of RTES to execute specified algs for control 

tasks 
-​ HW structure, OS, application SW 

-​ Cost functions and hard deadlines 
-​ Hard deadlines are the maximum controller “think” time that will allow controlled 

process to be kept in a stable state space 
-​ Cost of the response time C(r) = P(r) - P(0) 

-​ Where P(r) = performability associated with response time r 
-​ Hard deadline keeps deviations within a specified bound 

-​ Task execution times 
-​ Depends on source code, compiler, machine architecture, OS 
-​ Need an ideal tool which takes in all these factors and outputs a task execution 

time 
-​ Analyze straight-line source code 

-​ Estimate execution time of each microinstruction 
-​ What about loops and conditional branches? 

-​ Depends on input data, interrupts,  
-​ Difficult to estimate task execution time 

-​ Difficult to determine # times an instruction will be executed 
-​ Time to execute instructions is not constant 

-​ Depends on pipelining, out of order execution, cache, branch 
prediction, multiple instructions per clock cycle, multiple cores on a 
single die 

-​ Instruction execution time depends on instruction, data, and state of 
machine 

-​ Modeling concurrent task execution in a distributed real-time control computer system 
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-​ Execution time analysis 

-​ Hard real-time constraints/deadlines 
-​ Soft real-time constraints/deadlines 
-​ No set execution deadline for a given task 
-​ Is there a run i for which t_run,i > t_d? 

-​ Worst case execution time analysis 
-​ Path analysis 

-​ for (i=0; i<100; i++) {​
​ if rand() > 0.5​
​ ​ j++;​
​ else​
​ ​ k++;​
} 

-​ 2^100 feasible paths 
-​ Cannot enumerate all possible paths 
-​ Analytical approach required 

-​ Count analysis 
-​ Basic block 

-​ Sequence of instructions which are all executed if the 1st one in the 
sequence is executed 

-​ Block with no branches or loops 
-​ Steps 

-​ Divide program into basic blocks 
-​ Determine execution time of each block 
-​ Determine possible number of executions for each basic block 
-​ Maximize sum of execution time * # executions for each basic block 

-​ x1​ k=0;​
x2​ while(k<10){​
x3​ ​ if(ok)​
x4​ ​ ​ j++;​
x5​ ​ else{​
​ ​ ​ j=0;​
​ ​ ​ ok=true;​
​ ​ }​
x6​ ​ k++;​
} 

-​ Can design a control flow graph (CFG) to draw a graph from code 
-​ Draw arrows for where the code goes, for each block as a node 

-​ Integer linear programming formulation 
-​ Structural and logical constraints build a set of equations 
-​ Maximize sum obeying to all constraints 
-​ Objective function is linear and all constraints are linear expressions 

-​ ILP solver is guaranteed to determine the extreme case solution 



-​ Chronos 
-​ ILP techniques for caches 

-​ Memory hierarchy pyramid (processor -> registers -> caches -> RAM, main 
memory) 

-​ Cache hits / cache misses 
-​ 2 different execution times 
-​ c^hit, c^miss 
-​ x^hit, x^miss 

-​ Sum of c^hit * x^hit + c^miss * x^miss 
-​ Assume direct mapped caches 

-​ Line blocks 
-​ Basic blocks can content several instructions mapped to different cache lines 

-​ Would have to grab memory from different cache lines 
-​ Execution times differ depending on program structure 

-​ Contiguous sequence of code within same basic block that’s mapped to the 
same cache line in the instruction cache 

-​ B_4,1   B_4,2 
-​ Basic blocks to line blocks 

-​ Draw a table, look at number of cache sets 
-​ 0, 1, 2, 3 
-​ B_1 and B_3, B_1 and B_3, B_1 and B_2, B_2 
-​ Can group together 0 and 1 because their blocks are the same 
-​ Whenever you hit a line block for the 1st time, it’ll always result in a miss 
-​ Any 2 l-blocks that map onto the same cache set are called conflicting if they 

have different address tags 
-​ 2 non-conflicting l-blocks are mapped to the same cache line 

-​ Sum of basic blocks (sum of line blocks) 
-​  c^hit * x^hit + c^miss * x^miss 

-​ Cache conflict graph 
-​ For each cache set containing 2 or more conflicting l-blocks 

-​ Start node, end node, and node B_k.l for every l-block in the cache set 
-​ Edge from B_k.l to B_m.n: control can pass between them without passing 

through any other l-blocks of the same cache set 
-​ Start node, end node 

-​ Put nodes for each line block in the cache set 
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-​ Pipelining and caches 
-​ Fetch -> decode -> operand fetch -> execute -> result store 
-​ 5 concurrent instructions in execution 
-​ Timing complexity because of data inter-dependencies, branches, interrupts 
-​ Caches fix speed disparity b/w CPU and memory 
-​ Smarter cache avoids misses, divide into exclusive and shared areas 



-​ What about virtual memory for real-time systems? 
-​ Page faults (item isn’t in memory, have to fetch from disk) 

-​ Control speculation (branch prediction) 
-​ Execution time of concurrent tasks 

-​ Many CPS and RTES require multiple dependent tasks to run concurrently (not 
just single threaded) 

-​ Need to model concurrent tasks for their execution times and scheduling 
-​ Model must simultaneously consider both processing architecture (platform) and 

tasks (application) 
-​ System model 

-​ Platform architecture 
-​ Processing node architecture, registers, pipelines, caches 
-​ Operating system 
-​ Networking protocols 

-​ Task system 
-​ Application 
-​ Assignment (tasks) 
-​ Scheduling (modules or activities) 
-​ Activities are modeled by Generalized Stochastic Petri Nets (GSPN) 

which are converted to Continuous-Time Markov Chains (CTMC) 
-​ Markov chain -> math -> execution time prediction 

-​ Precedence constraints on tasks 
-​ Key to capturing dependencies between tasks 

-​ Application modeling 
-​ Task-oriented: too coarse to capture details 
-​ Module-oriented: difficult to study 

-​ Message scheduling policies 
-​ Communication protocols 
-​ Task execution stage of each PN 

-​ Approach 
-​ Contiguous stretches of code are combined into activities without losing 

precedence constraints and avg/worst execution times 
-​ GSPN -> sequence of CTMCs to model task system evolution 
-​ Task flow graph 

-​ Chain, AND-FORK & AND-JOIN, OR-FORK & OR-JOIN, Loop 
-​ OR doesn’t wait for late branches, AND does wait 

-​ Can construct any program using these 4 components 
-​ Can build a task tree to describe this task flow graph (TFG) with 4 

subgraphs 
-​ Definitions 

-​ Module: combination of 2 or more code stretches or modules 
-​ Activity: largest module that can be formed without violating precedence 

constraints 
-​ Marked Petri Net: C = (P,T,I,O,u) where u : P-># of tokens for place p in P 



-​ P is set of places 
-​ T is set of transitions 
-​ I is input 
-​ O is output 
-​ u is tokens (mapping indicating progress of execution [board game 

token]) 
-​ GSPN: marked Petri Net with a nonnegative random firing delay for each 

transition t in T 
-​ Example: SEND-RECEIVE-REPLY, REQUEST-RESPONSE, WAITFOR 

-​ Mert notes 
-​ Sum of control flows going into a node should be equal to the sum going out of a 

node 
-​ If you have self-loops in your control flow graph, it always represents a cache hit 
-​ If you have a transition between 2 conflicting l-blocks will always result in a cache 

miss 
-​ Read “Cache Modeling for Real-time Software: Beyond Direct Mapped 

Instruction Caches” 
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-​ Step through the GSPN model token-by-token 
-​ There may be probabilities for each transition 
-​ If there’s a deadlock in the GSPN, it’ll just timeout at (5ms) so no one cares 
-​ Continuous time markov chain 

-​ If there’s and end state involved, it could be time-critical 
 
09/24/21 
 



-​  
-​ Look at each conditional branch and draw the flow 
-​ Label edges, nodes 

-​  
-​ Transition between conflicting l-blocks will result in cache miss 
-​ Sum of edges going into it (or out of it) 
-​ Assume entire cache is empty before starting 
-​ c_ij is execution time of each line block, x_ij is number of executions of each line 

block 
-​ CFG to identify l-blocks 
-​ CCG to identify cache constraints 
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-​ Will real-time application really meet its timing constraints? 

-​ Feasible/optimal 
-​ Release time 
-​ (absolute, relative, effective) deadlines/release-times 
-​ Precedence relation 

-​ Set of tasks that must be completed before task T can begin its execution 
-​ Resource requirements 

-​ Processor, memory, bus, disk 
-​ Can either be exclusive or shared (read-only, read-write) 
-​ Schedule 

-​ Offline or online 
-​ Sometimes you don’t know all data required for 

computational workload in advance 
-​ Examples could be interrupts or unexpected events 

-​ Sometimes priority is static or dynamic 
-​ Another task might preempt its execution (taking over priority of 

execution) 
-​ Uni-processor or multi-processor 

-​ More terminology 
-​ Hard deadline (late result has little/no value or leads to catastrophe) 
-​ Soft deadline (late result can still be useful) 
-​ Tardiness 

-​ Min(0, deadline - completion time 
-​ Utility 

-​ Function of tardiness 
-​ Release time 

-​ Could be a fixed release time or there could be jitter/noise 
(sporadic or aperiodic) 

-​ A job can be released later than that of its successor 
-​ Execution time 

-​ Unpredictable due to memory refresh, DMA, pipelining, cache 
misses, interrupts, OS overhead, execution path variations, etc. 

-​ WCET 
-​ A deterministic parameter for the worst case 
-​ Conservative measure, an assumption to make scheduling 

feasible 
-​ Job 
-​ Deadline of a job can be earlier than that of its predecessor 
-​ Effective release time = max(release time, effective release time of all 

predecessors) 
-​ Effective deadline = min(deadline, effective deadline of all successors) 

-​ These are recursive definitions (if no successor/predecessor, 
effective = deadline/release) 



-​ Rate monotonic (RM): statically assign higher priorities to tasks with 
smaller periods 

-​ Deadline monotonic (DM): the smaller the relative deadline, the higher the 
priority 

-​ Earliest deadline first (EDF): the earlier the deadline, the higher the 
priority (this is optimal if preemption is allowed and jobs don’t contend for 
resources) 

-​ Maximum laxity first (MLF): the smaller the laxity, the higher the priority 
(also optimal) 

-​ Laxity is the laxness of your time to execute something (deadline - 
execution time) - right now 
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-​ Utilization is the fraction of execution time over the period 
-​ u = e/p 

-​ High priority task should preempt the low priority tasks (priority inversion) 
-​  
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-​ Clock driven 
-​ Static or off-line scheduling (calculated a priori) 
-​ Decision is made at a priori at chosen time instants 
-​ Uses a hardware timer and no OS 
-​ Regularly spaced time instants 
-​ Schedule is computed off-line and stored for use at run-time 

-​ All parameters of hard real-time jobs must be fixed and known 
-​ Scheduling overhead during run time is minimal 
-​ Complexity of scheduling algorithm is not important 
-​ Good schedules can be found 
-​ Disadvantage: no flexibility 

-​ n periodic tasks, tau1 to taun 
-​ Task is specified with phi, T, C, D (task phase, task period, execution time, 

deadline) 
-​ Shortened to T, C (period, execution time) 
-​ Only 1 processor 

-​ Schedule table 
-​ Occasionally CPU will be idle and no task is scheduled (x) 
-​  

 T1 T2 T3 T4 

Period 4 5 20 20 



Execution 
time 

1 1.8 1 2 

-​  

Time 0 1 2 3.8 4 5 6 8 9.8 

Task T1 T3 T2 x T1 X T4 T1 X 

-​  
-​ Only show for the Least Common Multiple of period (20) 

-​ Frame-based scheduling 
-​ Problems: big number of tasks, big schedule table, embedded systems 

have limited memory, reprogramming timer might be slow 
-​ Idea 

-​ Divide time to constant-size frames 
-​ Combine multiple jobs to a single frame 
-​ Scheduling decisions made only at frame boundaries 

-​ Downsides 
-​ No preemption, each job must fit in frame, schedule calculation + 

various error conditions (task overrun) 
-​ f is frame size, how to select f? 

-​ Constraints 
-​ we want big enough frames to fit every job without 

preempting it 
-​ f >= max(Ci) for i=1,...,n 

-​ In order to have a small table, f should divide H. Since H = 
LCM(T1,...,Tn), f divides Ti for at least one task Ti 

-​ Let F = H/f (F is integer). 
-​ H is called major cycle and f is minor cycle 

-​ We want frame size to be small so there is at least 1 frame 
between task release time and deadline 

-​ 2f - GCD(Ti, f) <= Di 
-​ deadline for i 

-​ Summary 
-​ H = LCM (T1,...,Tn) 
-​ f >= max(Ci) for i=1,...,n 
-​ f should divide H 
-​ 2f - GCD(Ti, f) <= Di 

-​ How to find f? 
-​ Start with f >= max(execution time) 
-​ Then find f’s that divides H 
-​ Finally, check each GCD equation value for each of these 

-​ 3 tasks (in helicopter control system) 



-​ 180x per second, computation time 1 ms 
-​ 90x per second, computation time 3 ms 
-​ 30x per second, computation time 10 ms 

-​ Hard real-time jobs have a hard deadline, doesn’t matter if it’s done early 
-​ Always schedule aperiodic jobs at the beginning (interrupt based first) 
-​ Slack stealing 

-​ There are periods of idle time on the CPU 
-​ Without slack stealing, do periodic hard tasks first and then fill in 
-​ With slack stealing, can move periodic hard tasks later and prioritize the 

aperiodic jobs 
-​  
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-​ 3 big questions 
-​ Where am I? 

-​ GPS + digital maps 
-​ Where to go? 

-​ Mission/route planning 
-​ What’s around me? 

-​ 360 sensing 
-​ Sensor types 

-​ GPS, LIDAR, Images, CAN, WIFI/5G, Integrated Display, Ultrasonic 
Sensors, Full-operational Arch, Multicore, FPGA, FlexRay, Ethernet, 
DSRC 

-​ Need to do the above with large volume, long operation time, uncertain operation 
environment, reliably and safely, mixed traffic 

-​ SAE levels 
-​ 0: No automation 
-​ 1: Driver assistance 
-​ 2: Partial assistance 
-​ 3: Conditional automation 

-​ From here an above, any issues are human fault (human final decision) 
-​ 4: High automation 

-​ From here beyond, any issues are manufacturer’s fault 
-​ 5: Full automation 

-​ Most things we talk about are level 4+ 
-​ AV system components 

-​ Environment sensing -> perception and planning -> motion control and vehicle 
operation 

-​ Needs to be performant, safe, and affordable 
-​ Approach for automated driving 

-​ L5 (gradually pull back to lower level) 
-​ Object detection 



-​ Multi LIDARS and multi cameras and detailed HD map 
-​ Working environment 

-​ Day + night with rain and snow 
-​ Image annotation 

-​ Semi-automatic with human assistance 
-​ Training technique 

-​ No pre-training/reinforced learning 
-​ Limitations 

-​ Works better on predefined routes 
-​ L1/L2/L3/L4 (gradually grow to higher level) 

-​ Object detection 
-​ Single camera and multi radar sensors 

-​ Working environment 
-​ Daytime with bright light 

-​ Image annotation 
-​ Manual annotation by human 

-​ Training technique 
-​ Supervised training 

-​ Limitations 
-​ Fallback to human driver 

-​ AV cost 
-​ $$$, space, driving range, warranty, maintenance 

-​ Perception 
-​ Camera, LIDAR, Radar 

-​ Different advantages 
-​ Camera (Best sensor for color and texture interpretation) 
-​ LIDAR (High precision detection without light/sound 

interference) 
-​ Radar (Cost effective, good as backup sensor) 

-​ Different disadvantages 
-​ Camera (High processing required) 
-​ LIDAR (Needs HD map, requires huge amounts of data, 

expensive) 
-​ Radar (Poor resolution, 2D information only) 

-​ Processing 
-​ Algorithms 

-​ HOG, sobel, SVM 
-​ Alexnet, Squeezenet, SSD, YOLOv3 
-​ Optical flow, ORB 

-​ Timing characteristics 
-​ Constant execution time 
-​ Need to detect multiple at once 
-​ Tradeoff between processing delay and accuracy 



-​ Some algorithms can do it fairly well with small 
amount of time, can possibly spend longer to 
compute higher accuracy result 

-​ Single frame processing delay - batch processing may be 
limited 

-​ Time synchronization among multiple sources 
-​ Hardware computing platform 

-​ Multicore, many-core, accelerators (DSP, GPU, FPGA) 
-​ Challenges 

-​ High performance, high computation, safe and secure, affordable, 
optimization with large number of parameters 

-​ Focus on vision 
-​ Vision processing are main components posing challenges 
-​ Lidar processing shares challenges (less computation 

load) 
-​ Radar is light computing workload 

-​ Deep learning / neural network for vision processing 
-​ Inference of pre-trained CNN 
-​ Special cases for adaptive learning or reinforcement 

learning 
-​ Development process 

-​ Algorithm developed on machine -> portable across different computing 
platforms -> enable system level optimization and analyzability -> meet 
requirements on timing, safety, security 

-​ Solution concepts 
-​ Objective: run a CNN inference algorithm effectively and efficiently 

-​ Computation reduction 
-​ Quantization (32bit -> 16bit) and pruning 
-​ Can binarize CNN (use bit operations instead of floating 

point precision) 
-​ Selective processing 

-​ Crop regions of interests 
-​ Use camera to guide LIDAR 

-​ Architecture optimization 
-​ Hardware acceleration 

-​ Multi-core CPU 
-​ GPU 
-​ FPGA 
-​ TPU 

-​ Parallel processing 
-​ Device sharing 

-​ Multiple vision applications using different resources 
-​ Need to synchronize using locks 

-​ Preemptable CNN 



-​ Meaningful result only retrieved at the end of the process 
-​ Models get more complex with more layers 
-​ Easy to schedule if preemptable 
-​ Deal with different levels of CNN importance/criticality 
-​ Desired CNN with fine-grain execution control 
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-​ Schedules 
-​ Earliest deadline first (EDF) schedule 

-​ Preemptive dynamic priority scheduling 
-​ Job with earliest deadline has priority 

-​ Non-preemptive or multiple processors is non-optimal 
-​ Least slack time (LST) 

-​ Preemptive priority scheduling based on slack time (deadline - execution 
time) 

-​ Optimal for preemptive single processor schedule 
-​ Schedule anomaly 

-​ The schedule fails even after we reduce job execution times 
-​ Preemptive is much easier than non-preemptive scheduling 

-​ Aperiodic tasks 
-​ A periodic server follows the cyclic schedule and looks at aperiodic task queue 
-​ Slack stealing 

-​ Slack time is how much each periodic task can be delayed 
-​ Assume all tasks must be completed before the end of their frames and 

aperiodic tasks are not preemptable 
-​ Do slack stealing at beginning of each frame and examine queue when 

idle 
-​ Scheduling goal 

-​ No deadlines missed for all jobs invoked by a set of periodic tasks 
-​ Scheduling algorithm 

-​ Determines when to execute a task (EDF, RM) 
-​ Schedulability analysis 

-​ Guarantee no deadline misses of a given task under a scheduling algorithm 
-​ Real-time scheduling 
-​ Assumptions 

-​ Single processor 
-​ Hard deadline 
-​ Independent periodic tasks 
-​ Relative deadline = period 
-​ Preemptable without any limit 
-​ No overhead for context switch 

-​ Why should you start with a simple theoretical model? 
-​ Shannon for example started with a useless impractical simple model 



-​ After solving the simple model, he started adding complexity back into the model, 
one by one 

-​ Priority-driven scheduling 
-​ Task-level fixed-priority (TFP): all jobs of periodic task have the same fixed 

priority 
-​ RM (rate-monotonic) 

-​ Task-level dynamic-priority: different priorities to individual jobs of a periodic task 
-​ Job-level fixed-priority (JFP): priority of each job is fixed 

-​ EDF (earliest deadline first) 
-​ Job-level dynamic-priority (JDP): priority of each job can change over time 

-​ LSTF (least slack time first) 
-​ In analysis, what is the maximum utilization (rather than time) 

-​ Execution time / period 
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-​ Rate monotonic (RM) 
-​ A job is encountering worst-case (critical instant) 

-​ Shift each task so that its first job is released at t, just shifting the arrival 
times 

-​ If you can meet the job at the critical instant, then you can meet it in all cases 
-​ Utilization based analysis 

-​ Using CPU at 69.3%, you will be guaranteed to meet all jobs across a 
task set 

-​ U <= n(2^(1/n) - 1.0) -> 0.69 
-​ Calculate least upper bound of processor utilization 

-​ This is a sufficient condition, not a necessary condition 
-​ Example for 2 tasks 

-​ n = tasks, p = periods, t = tasks, e = execution times, U = 
utilization 

-​ if n=2, solve the equation and = 0.828 
-​ Let p2 < 2*p1 
-​ Determine the maximum schedulable e2 
-​ p2 <= p1 + e1, max(e2) = p1 - e1 
-​ p2 is in [p1, 2*p1] 

-​ Trying to have maximum job execution time without missing deadlines 
-​ Minimum U occurs when p2 = p1 + e1, where U = e1/p1 + 

(p1-e1)/(p1+e2) 
-​ Can take the derivative for p1 and set (partial derivative) dU/dp1 = 

0 
-​ We get e1=(2^(½)-1.0)p1 and U=0.828 

-​ If total utilization is less than utilization upper bound function, then we’re 
all good 

-​ Execution time / period = utilization (.753) 



-​ .753 < .779 
-​ Response-time analysis 

-​ an+1=ei+sum(an/pj)ej 
-​ Test terminates when an+1 = an 
-​ n tasks, testing schedulability of each task 

-​ Go down the line of tasks by priority and whether they’re 
schedulable (assuming unlimited preemption) 

-​ an is estimation of response time or completion time (sums of higher 
priority tasks) of task i 

-​ Task i is schedulable if its response time is before its deadline: 
-​ an <= pi 
-​ an is the response time of Ti 

-​ e1 = 40, e2 = 40, e3 = 100, p1 = 100, p2 = 150, p3 = 350 
-​ a0 = sum(ej) = e1+e2+e3 = 180 
-​ a1 = 100 + 180/100(40) = 180/150(40) = 100 + 80 + 80 = 260 
-​ a2 = ei + sum(a1/pj)ej = 100 + 260/100(40) + 260/150(40) = 300 
-​ a3 = 100 + 300/100(40) + 300/150(40) = 300 

-​ This works because time-demand analysis is based on the critical instant 
-​ If Ji is done at t, then the total work must be done in [0,t] is (from Ji 

and all higher priority tasks): 
-​ wi(t)=ei+sum(t/pk)ek 
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-​ Round robin 
-​ Similar to FCFS scheduling 
-​ CPU bursts (execution) assigned with time quantum 
-​ Advantages 

-​ Fairness equal share of CPU 
-​ New created process added to end of queue 
-​ Time sharing, each job/time slot has time quantum 
-​ Each process has a chance to reschedule 

-​ Disadvantage 
-​ Low throughput 
-​ Larger waiting time and response time 
-​ Context switches 
-​ Gantt chart becomes very big 
-​ Small quantums = time consuming 

-​ Metrics 
-​ Completion time 

-​ Time when process completes its execution 
-​ Turnaround time 

-​ Time difference between completion time and arrival time 
-​ Waiting time 



-​ Time difference between turnaround time and burst time 
-​ Rate-monotonic (RM) 

-​ Higher period frequency is higher priority task for RM 
-​ Response time analysis 

-​ Exact test, use if upper bound test is indeterminate 
-​ One analysis per task 

-​ Stop conditions 
-​ Deadline violation Rwci > Di = pi 
-​ Convergence Rwci(m+1) = Rwci(m) 

-​ RM Example 1 
-​  

Ti pi ei 

1 2 0.5 

2 3 0.5 

3 6 2 

-​ U = 0.5/2 + 0.5/3 + 2/6 = 0.75 
-​ U(3) = 0.779 
-​ 0.75 < 0.779 
-​ Sufficient, tasks are schedulable 

-​ RM Example 2 
-​  

Ti pi ei 

1 2 0.5 

2 3 0.5 

3 6 3 
-​ U = 0.92 
-​ U(3) = 0.779 
-​ 0.92 > 0.779 
-​ Is T1 schedulable? 

-​ Rwc1(0) = C1 = 0.5 <= 2 
-​ Is T2 schedulable? 

-​ Rwc2(0) = C1 + C2 = 1 
-​ Rwc2(1) = ceil(Rwc2(0)/T1) * C1 + C2 = ceil(½) * 0.5 + 0.5 = 1 
-​ Converged, 1<= 3 

-​ Is T3 schedulable? 
-​ Rwc3(0) = C1 + C2 + C3 = 0.5 + 0.5 + 3 = 4 
-​ Rwc3(1) = ceil(Rwc3(0)/T1) * C1 + ceil(Rwc3(0)/T2) * C2 + C3 =  

-​ ceil(4/2) * 0.5 + ceil(4/3) * 0.5 + 3 = 5.5 
-​ Rwc3(2) = ceil(Rwc3(1)/T1) * C1 + ceil(Rwc3(1)/T2) * C2 + C3 =  



-​ 5.5 
-​ Converged, 5.5 <= 6 

-​ RM Example 3 
-​  

Ti ei 

3 1 

4 1 

6 2.1 

-​ 0.93 > 0.779 
-​ Rwc3(1) = ceil(Rwc3(0)/T1) * C1 + ceil(Rwc3(0)/T2) * C2 + C3 = 6.1 
-​ 6.1 > 6, deadline violation 

-​ Number 6 don’t try to derive the equation from the original RM equation 
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-​ RM Transient Overload 
-​ If task with lower period is not critical to the underlying application 
-​ To deal with this, consider period transformation, period aggregation, or period 

splitting 
-​ Could drop the task altogether, but this is non-desirable 
-​ Replace the problematic task with 2 tasks, each with 2x original period 

-​ RM Schedulability With Interrupts 
-​ Interrupts should receive higher priority than application 
-​ Interrupt handler executes higher priority irrespective of its period 
-​ Interrupt processing can delay execution of app tasks with shorter periods 
-​ This interrupt processing must be accounted for in the schedulability model. How 

to change the UB test? 
-​ UB test with interrupt 

-​ Test is applied to each task 
-​ Determine effective utilization (fi) of each task i using: 

-​ Sumj=Hn(ei/pi) + ei/pi + 1/pi * Sumk=H1(ek) 
-​ Compare effective utilization (fi) to bound U(n) 

-​ n = num(Hn + 1) where num(Hn) = number of tasks in set Hn 
-​ Hn is the set of tasks that will preempt current task more than once 

with period less than Di 
-​ H1 is the set of tasks that preempt current task only once with 

period greater than Di 
-​ Priority inversion 

-​ Delay to a task’s execution is when blocking occurs from lower-priority tasks 
-​ If the tasks share the same resources, this can happen 
-​ We need to identify and evaluate sources of priority inversion 
-​ Sources 



-​ Synchronization and mutual exclusion (mutex locks) 
-​ Non-preemptable regions of code 
-​ FIFO queues 

-​ How to deal with priority inversion in schedulability analysis 
-​ Task schedulability is affected by: 

-​ Preemption: 2 types 
-​ Occurs several times per task period OR 
-​ Occurs once per period 

-​ Execution: Once per period 
-​ Blocking: At most once per period for each resource 

-​ Schedulability formulas are modified to add a “blocking” or “priority inversion” 
term 

-​ Response time analysis with blocking 
-​ an+1 = Bi + ei + Sum(an/pi)ei 
-​ Perform test as done before, including blocking effect 

-​ Where a0 = Bi + Sum(ej) 
-​ Example 

-​ Where data structure is 30 msec to access 
-​ T3 just enters the critical section, then T2 preempts T3 while T1 is still 

waiting for the data structure, so T1 must wait for T2 to finish its 
computation 

-​  

Task Period Execution 
Time 

Priority Blocking 
Delay 

Deadline 

T1 100 25 High 30+50 100 

T2 200 50 Medium 0 200 

T3 300 100 Low 0 300 

-​ f1 = e1/p1 + B1/p1 = 25/100 + 80/100 = 1.05 
-​ 1.05 > 1.00, not schedulable 

-​ f2 = e1/p1 + e2/p2 = 0.5 
-​ 0.5 < U(2) 

-​ f3 = e1/p1 + e2/p2 + e3/p3 = 0.84 
-​ 0.84 > U(3) 

-​ Higher priority task is not always more schedulable than lower priority 
tasks because of this 

-​ EDF schedulability analysis 
-​ EDF is schedulable iff U <= 1.0 
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-​ Usually use mutex locks 
-​ Priority inversion occurs with shared resources or critical section 



-​ High priority task wants to access locked resource, but it has to wait since low priority 
task has locked it 

-​ Low priority task runs for a bit 
-​ Then medium priority task preempts it 
-​ Low priority task finishes and unlocks the resource 
-​ Finally high priority task can run 

-​ Normally, priority inversion is not harmful 
-​ But it could cause serious problems 

-​ Mars Pathfinder 
-​ Landed on Mars on July 4th 1997 
-​ Surface operations, daily images of Mars, daily weather reports from surface of 

Mars 
-​ On July 12th, there were technical problems (communication errors) 
-​ On July 19th, the problem was solved 
-​ Turns out, a CTO of the RTOS for Pathfinder said that there was a priority 

inversion problem 
-​ Pathfinder had 3 tasks: 

-​ TH: information bus task (short, frequent, quick responses) 
-​ TM: communication task (sending pictures to Earth) 
-​ TL: meteorological task (long task) 
-​ TH had to wait very long because of priority inversion 
-​ Usually you build a timeout mechanism to do a total system reset 

-​ You can drive any system to an unknown state (digital upset) which causes a total 
system reset 

-​ Timeout based reset mechanism can be exploited 
-​ Solution is a priority inheritance protocol or priority ceiling protocol 


