
08/30/21

-​ Dates
-​ Oct 4: 1 page project proposal due
-​ Dec 1: Exam (25%)
-​ Dec 8: Posters/demos (30%)
-​ Dec 15 4pm: Project report due (20%)
-​ Weekly homeworks (15%)

-​ Readings
-​ Real-Time Systems K Shin’s book
-​ IEEE RTSS
-​ IEEE RTAS
-​ ACM/IEEE ICCPS
-​ International Journal of Time-Critical Computing
-​ ACM Transactions on Embedded Systems
-​ ACM Transactions on Cyber-Physical Systems

-​ Homework
-​ Read and analyze 2 or more recent papers on topics covered during the

assignment period (4 page long report including references)
-​ Cover page

-​ Title of topic, name, e-mail address, date of submission, and brief
summary of articles read

-​ Analysis and critiques
-​ Critically analyzed

-​ If I were the author, what would I do differently?
-​ References

-​ Term Projects
-​ Team of up to 3 total members

-​ Can use project for research but not as another class
-​ Literature surveys or slight modifications of existing work not allowed
-​ Should be publishable

-​ Notes
-​ Trade-offs apply to everything including airplanes, embedded systems, AI

-​ Efficiency, robustness, usability, security, speed,
-​ Do a paper presentation
-​ 5 days to regrade on anything
-​ Research is defined as creation from nothing or from ill-conceived notions
-​ Finish PhD feeling like you can do anything

-​ Class Content
-​ Real-time systems may be defined by particular granularity of time (ms, s) it

needs to be in before it fails
-​ Deadlines can come from law of physics or can be artificially imposed
-​ Soft real-time system is where user is unhappy if not done by a deadline

-​ Hard real-time system is where system doesn’t work at all if not done by a
deadline

09/01/21

-​ How fast can you acquire data, process it, and actuate decisions?
-​ Achieve all 3 steps before the deadline
-​ For example, cars traveling fast may not be able to stop/react as fast, also

depends on road conditions
-​ Deadline’s could be random variables as well (or noisy to some degree)
-​ We digitize/discretize analog signals at a specific frequency (sample interval)

-​ Sampling theory
-​ Sample more as car goes faster

-​ End to end latency is also considered application latency
-​ How to allocate deadline time to individual components? (deadline

distribution)
-​ Artificial deadlines created from usability studies

-​ Provide safety margins where you have to miss many deadlines before failure
-​ The same task could be hard real-time or soft real-time depending on the state of the

system
-​ Tasks/messages/packets may be triggered periodically, aperiodically or

sporadically (2 consecutive instances must be infrequent to some minimum)
-​ Braking is a sporadic task, combined with detecting an obstacle which is periodic

-​ Typically assume 2 consecutive failures take longer than the recovery time
-​ Multiple failure before recovery can cause issues
-​ Lump multiple simultaneous failures as a single failure

-​ We want to optimize and create adaptive schedules because:
-​ Computation takes time, generates heat, consumes energy, consumes

bandwidth
-​ Requirements

-​ Size, power (heat), weight, radiation/EM hardened
-​ Performance must be responsive and predictable
-​ Must be cheap and short time-to-market
-​ Must be safe, reliable, secure/private

09/03/21

-​ System state can be handled by external triggers via polling or ISR (interrupt handler)
-​ Interrupt done between instructions not in the middle of instruction execution

(time consuming [flush cache, save registers, etc.])
-​ Polling (spinlocks) [better when it’ll clear up soon]
-​ Event and/or time-driven state transitions

-​ From input to output, you have to go through a series of states
-​ State can also be considered with the number of processors

-​ Or CPU is in WAIT, EXECUTE, SUSPEND
-​ Event driven (conditional), time driven (every n seconds)

-​ Timing constraints and multi-threading
-​ Given x at time t1, produce y by t2
-​ Non-deterministic, race conditions, time-dependent behavior, etc.
-​ Failures are rooted in interaction of multiple concurrent operations and threads

-​ RTOS
-​ Use host and target systems
-​ Needs to be a good resource manager

Green is controlled processes, yellow is the controller

-​ You can model a lot of things in this manner (humans, cars, internet, etc.)
-​ Process keeps cycling until mission is complete

09/08/21

-​ Trends
-​ Proliferation

-​ Industrial, RFIDs, sensor networks and ad hoc wireless, medical, smart
spaces and assisted living

-​ Integration at scale
-​ Low end

-​ Sensor networks, world wide sensor web

-​ Ubiquitous embedded devices, large scale networked embedded
systems, seamless integration with a physical environment

-​ High end
-​ Power grids, navy ships, global information grid
-​ Complex systems with global integration

-​ Biological evolution
-​ Exponential proliferation of embedded devices (Moore’s law) is not

matched by an increase in human ability to consume information
-​ Increasing autonomy (human out of the loop)

-​ These trends all come together to a distributed cyber-physical information
distillation and control systems (of embedded devices)

-​ Electric Vehicles as an example
-​ Components are all independent so turning off the car doesn’t turn off parts
-​ Power system in EVs

-​ Powertrain, AC, radios, window lift, sunroof control (must need
communication and control)

-​ Cyber physical coupling. There should be cyber capabilities in every
physical components (large scale wired and wireless networking)

-​ System of systems has spatial-temporal constraints (dynamically
reorganizing/reconfiguring)

-​ Also has security and privacy needs
-​ Control loops keep looping (must close loop, example loop time 1 ms)

-​ High automation
-​ Electric power grids

-​ Equipment protection devices trip reactively and locally
-​ Cascading failure (2003)
-​ Real-time cooperative control of protection devices
-​ Self healing islands of stable bulk power
-​ Issue: conventional operational control concerns for bulk power stability and

quality, flow control, and fault isolation
-​ Context: market behavior, power routing transactions, regulations
-​ Disposing extra electricity is non-trivial

-​ Health care and medicine
-​ Medical records at any location
-​ Pulse oximeters, blood glucose monitors, insulin, fall detection
-​ Operating room should be closed loop monitoring and control, plug and play,

robotic microsurgery

09/10/21

-​ Sporadic tasks
-​ Hard deadline
-​ Highly critical task
-​ Executed whenever there’s time

-​ Rejected by scheduler if there’s less slack time
-​ Deadlines are met easily

-​ Aperiodic tasks
-​ Soft deadline
-​ Low or moderate critical task
-​ Execution doesn’t depend on available slack time
-​ Never rejected by scheduler
-​ Meeting all deadlines is difficult

-​ Each task has a priority depending on the scheduler

09/13/21 - CPS

-​ Grand visions
-​ Near-0 automotive traffic fatalities, minimal injuries, reduced traffic congestion

and delays
-​ Blackout-free electricity
-​ Perpetual life assistants
-​ Extreme-yield agriculture
-​ Energy-aware buildings
-​ Location-independent access to world-class medicine
-​ Physical critical infrastructure that calls for preventive maintenance
-​ Self-correcting and self-certifying cyber-physical systems
-​ Reduce testing and integration time of complex CPS

-​ Example: Battery awareness
-​ Don’t want to overcharge battery

-​ Potential accidents
-​ Unsound interconnections
-​ Feature interactions that are unanticipated
-​ Inadequate development infrastructure
-​ System instabilities

-​ Interaction modes
-​ Computation resources
-​ Shared resources
-​ Controlled plant
-​ Human operators
-​ Larger environment

-​ Formal methods
-​ Instead of testing or simulation, uses automated model checking, theorem

proving, static analysis, run-time verification
-​ Exponential complexity:

-​ Best when property is simple or system is small/abstract
-​ Model rather than C-code

09/15/21

-​ Characterizing RTES
-​ How to measure “goodness” of RTES?
-​ How to estimate exec time of a program given source code and target

architecture?

-​
-​ Execution time

-​ A
-​ Predictability

-​ B
-​ aM+bV, or (M, V)

-​ weighted sum of mean response time and variance
-​ How do we rank the two?

-​ How to measure RTES performance
-​ MIPS?

-​ No, depends on architecture (RISC = 1/1.2 clock cycles) (CISC = 1/1.8
clock cycles)

-​ Want RTS performance measure to:
-​ Be efficient encoding of relevant information
-​ Be objective means for ranking candidate systems for an application
-​ Represent verifiable facts

-​ Performance measures
-​ Reliability: R(t)
-​ Availability: A(t)
-​ Throughput
-​ Capacity reliability

-​ Probability of not being in any failure states
-​ Computational reliability

-​ Probability system can start task T at time t and in state s
-​ Performability

-​ Given n accomplishment levels, performability is where probability
the computer functions to allow the controlled process to reach
accomplishment

-​ A1, A2, …, An and P(A1), P(A2), …, P(An)
-​ Hierarchical format

-​ Accomplishment levels
-​ Accomplishment of controlled-process tasks
-​ Capacity of RTES to execute specified algs for control

tasks
-​ HW structure, OS, application SW

-​ Cost functions and hard deadlines
-​ Hard deadlines are the maximum controller “think” time that will allow controlled

process to be kept in a stable state space
-​ Cost of the response time C(r) = P(r) - P(0)

-​ Where P(r) = performability associated with response time r
-​ Hard deadline keeps deviations within a specified bound

-​ Task execution times
-​ Depends on source code, compiler, machine architecture, OS
-​ Need an ideal tool which takes in all these factors and outputs a task execution

time
-​ Analyze straight-line source code

-​ Estimate execution time of each microinstruction
-​ What about loops and conditional branches?

-​ Depends on input data, interrupts,
-​ Difficult to estimate task execution time

-​ Difficult to determine # times an instruction will be executed
-​ Time to execute instructions is not constant

-​ Depends on pipelining, out of order execution, cache, branch
prediction, multiple instructions per clock cycle, multiple cores on a
single die

-​ Instruction execution time depends on instruction, data, and state of
machine

-​ Modeling concurrent task execution in a distributed real-time control computer system

09/17/21

-​ Execution time analysis

-​ Hard real-time constraints/deadlines
-​ Soft real-time constraints/deadlines
-​ No set execution deadline for a given task
-​ Is there a run i for which t_run,i > t_d?

-​ Worst case execution time analysis
-​ Path analysis

-​ for (i=0; i<100; i++) {​
​ if rand() > 0.5​
​ ​ j++;​
​ else​
​ ​ k++;​
}

-​ 2^100 feasible paths
-​ Cannot enumerate all possible paths
-​ Analytical approach required

-​ Count analysis
-​ Basic block

-​ Sequence of instructions which are all executed if the 1st one in the
sequence is executed

-​ Block with no branches or loops
-​ Steps

-​ Divide program into basic blocks
-​ Determine execution time of each block
-​ Determine possible number of executions for each basic block
-​ Maximize sum of execution time * # executions for each basic block

-​ x1​ k=0;​
x2​ while(k<10){​
x3​ ​ if(ok)​
x4​ ​ ​ j++;​
x5​ ​ else{​
​ ​ ​ j=0;​
​ ​ ​ ok=true;​
​ ​ }​
x6​ ​ k++;​
}

-​ Can design a control flow graph (CFG) to draw a graph from code
-​ Draw arrows for where the code goes, for each block as a node

-​ Integer linear programming formulation
-​ Structural and logical constraints build a set of equations
-​ Maximize sum obeying to all constraints
-​ Objective function is linear and all constraints are linear expressions

-​ ILP solver is guaranteed to determine the extreme case solution

-​ Chronos
-​ ILP techniques for caches

-​ Memory hierarchy pyramid (processor -> registers -> caches -> RAM, main
memory)

-​ Cache hits / cache misses
-​ 2 different execution times
-​ c^hit, c^miss
-​ x^hit, x^miss

-​ Sum of c^hit * x^hit + c^miss * x^miss
-​ Assume direct mapped caches

-​ Line blocks
-​ Basic blocks can content several instructions mapped to different cache lines

-​ Would have to grab memory from different cache lines
-​ Execution times differ depending on program structure

-​ Contiguous sequence of code within same basic block that’s mapped to the
same cache line in the instruction cache

-​ B_4,1 B_4,2
-​ Basic blocks to line blocks

-​ Draw a table, look at number of cache sets
-​ 0, 1, 2, 3
-​ B_1 and B_3, B_1 and B_3, B_1 and B_2, B_2
-​ Can group together 0 and 1 because their blocks are the same
-​ Whenever you hit a line block for the 1st time, it’ll always result in a miss
-​ Any 2 l-blocks that map onto the same cache set are called conflicting if they

have different address tags
-​ 2 non-conflicting l-blocks are mapped to the same cache line

-​ Sum of basic blocks (sum of line blocks)
-​ c^hit * x^hit + c^miss * x^miss

-​ Cache conflict graph
-​ For each cache set containing 2 or more conflicting l-blocks

-​ Start node, end node, and node B_k.l for every l-block in the cache set
-​ Edge from B_k.l to B_m.n: control can pass between them without passing

through any other l-blocks of the same cache set
-​ Start node, end node

-​ Put nodes for each line block in the cache set

09/20/21

-​ Pipelining and caches
-​ Fetch -> decode -> operand fetch -> execute -> result store
-​ 5 concurrent instructions in execution
-​ Timing complexity because of data inter-dependencies, branches, interrupts
-​ Caches fix speed disparity b/w CPU and memory
-​ Smarter cache avoids misses, divide into exclusive and shared areas

-​ What about virtual memory for real-time systems?
-​ Page faults (item isn’t in memory, have to fetch from disk)

-​ Control speculation (branch prediction)
-​ Execution time of concurrent tasks

-​ Many CPS and RTES require multiple dependent tasks to run concurrently (not
just single threaded)

-​ Need to model concurrent tasks for their execution times and scheduling
-​ Model must simultaneously consider both processing architecture (platform) and

tasks (application)
-​ System model

-​ Platform architecture
-​ Processing node architecture, registers, pipelines, caches
-​ Operating system
-​ Networking protocols

-​ Task system
-​ Application
-​ Assignment (tasks)
-​ Scheduling (modules or activities)
-​ Activities are modeled by Generalized Stochastic Petri Nets (GSPN)

which are converted to Continuous-Time Markov Chains (CTMC)
-​ Markov chain -> math -> execution time prediction

-​ Precedence constraints on tasks
-​ Key to capturing dependencies between tasks

-​ Application modeling
-​ Task-oriented: too coarse to capture details
-​ Module-oriented: difficult to study

-​ Message scheduling policies
-​ Communication protocols
-​ Task execution stage of each PN

-​ Approach
-​ Contiguous stretches of code are combined into activities without losing

precedence constraints and avg/worst execution times
-​ GSPN -> sequence of CTMCs to model task system evolution
-​ Task flow graph

-​ Chain, AND-FORK & AND-JOIN, OR-FORK & OR-JOIN, Loop
-​ OR doesn’t wait for late branches, AND does wait

-​ Can construct any program using these 4 components
-​ Can build a task tree to describe this task flow graph (TFG) with 4

subgraphs
-​ Definitions

-​ Module: combination of 2 or more code stretches or modules
-​ Activity: largest module that can be formed without violating precedence

constraints
-​ Marked Petri Net: C = (P,T,I,O,u) where u : P-># of tokens for place p in P

-​ P is set of places
-​ T is set of transitions
-​ I is input
-​ O is output
-​ u is tokens (mapping indicating progress of execution [board game

token])
-​ GSPN: marked Petri Net with a nonnegative random firing delay for each

transition t in T
-​ Example: SEND-RECEIVE-REPLY, REQUEST-RESPONSE, WAITFOR

-​ Mert notes
-​ Sum of control flows going into a node should be equal to the sum going out of a

node
-​ If you have self-loops in your control flow graph, it always represents a cache hit
-​ If you have a transition between 2 conflicting l-blocks will always result in a cache

miss
-​ Read “Cache Modeling for Real-time Software: Beyond Direct Mapped

Instruction Caches”

09/22/21

-​ Step through the GSPN model token-by-token
-​ There may be probabilities for each transition
-​ If there’s a deadlock in the GSPN, it’ll just timeout at (5ms) so no one cares
-​ Continuous time markov chain

-​ If there’s and end state involved, it could be time-critical

09/24/21

-​
-​ Look at each conditional branch and draw the flow
-​ Label edges, nodes

-​
-​ Transition between conflicting l-blocks will result in cache miss
-​ Sum of edges going into it (or out of it)
-​ Assume entire cache is empty before starting
-​ c_ij is execution time of each line block, x_ij is number of executions of each line

block
-​ CFG to identify l-blocks
-​ CCG to identify cache constraints

09/27/21

-​ Will real-time application really meet its timing constraints?

-​ Feasible/optimal
-​ Release time
-​ (absolute, relative, effective) deadlines/release-times
-​ Precedence relation

-​ Set of tasks that must be completed before task T can begin its execution
-​ Resource requirements

-​ Processor, memory, bus, disk
-​ Can either be exclusive or shared (read-only, read-write)
-​ Schedule

-​ Offline or online
-​ Sometimes you don’t know all data required for

computational workload in advance
-​ Examples could be interrupts or unexpected events

-​ Sometimes priority is static or dynamic
-​ Another task might preempt its execution (taking over priority of

execution)
-​ Uni-processor or multi-processor

-​ More terminology
-​ Hard deadline (late result has little/no value or leads to catastrophe)
-​ Soft deadline (late result can still be useful)
-​ Tardiness

-​ Min(0, deadline - completion time
-​ Utility

-​ Function of tardiness
-​ Release time

-​ Could be a fixed release time or there could be jitter/noise
(sporadic or aperiodic)

-​ A job can be released later than that of its successor
-​ Execution time

-​ Unpredictable due to memory refresh, DMA, pipelining, cache
misses, interrupts, OS overhead, execution path variations, etc.

-​ WCET
-​ A deterministic parameter for the worst case
-​ Conservative measure, an assumption to make scheduling

feasible
-​ Job
-​ Deadline of a job can be earlier than that of its predecessor
-​ Effective release time = max(release time, effective release time of all

predecessors)
-​ Effective deadline = min(deadline, effective deadline of all successors)

-​ These are recursive definitions (if no successor/predecessor,
effective = deadline/release)

-​ Rate monotonic (RM): statically assign higher priorities to tasks with
smaller periods

-​ Deadline monotonic (DM): the smaller the relative deadline, the higher the
priority

-​ Earliest deadline first (EDF): the earlier the deadline, the higher the
priority (this is optimal if preemption is allowed and jobs don’t contend for
resources)

-​ Maximum laxity first (MLF): the smaller the laxity, the higher the priority
(also optimal)

-​ Laxity is the laxness of your time to execute something (deadline -
execution time) - right now

09/29/21

-​ Utilization is the fraction of execution time over the period
-​ u = e/p

-​ High priority task should preempt the low priority tasks (priority inversion)
-​

10/01/21

-​ Clock driven
-​ Static or off-line scheduling (calculated a priori)
-​ Decision is made at a priori at chosen time instants
-​ Uses a hardware timer and no OS
-​ Regularly spaced time instants
-​ Schedule is computed off-line and stored for use at run-time

-​ All parameters of hard real-time jobs must be fixed and known
-​ Scheduling overhead during run time is minimal
-​ Complexity of scheduling algorithm is not important
-​ Good schedules can be found
-​ Disadvantage: no flexibility

-​ n periodic tasks, tau1 to taun
-​ Task is specified with phi, T, C, D (task phase, task period, execution time,

deadline)
-​ Shortened to T, C (period, execution time)
-​ Only 1 processor

-​ Schedule table
-​ Occasionally CPU will be idle and no task is scheduled (x)
-​

 T1 T2 T3 T4

Period 4 5 20 20

Execution
time

1 1.8 1 2

-​

Time 0 1 2 3.8 4 5 6 8 9.8

Task T1 T3 T2 x T1 X T4 T1 X

-​
-​ Only show for the Least Common Multiple of period (20)

-​ Frame-based scheduling
-​ Problems: big number of tasks, big schedule table, embedded systems

have limited memory, reprogramming timer might be slow
-​ Idea

-​ Divide time to constant-size frames
-​ Combine multiple jobs to a single frame
-​ Scheduling decisions made only at frame boundaries

-​ Downsides
-​ No preemption, each job must fit in frame, schedule calculation +

various error conditions (task overrun)
-​ f is frame size, how to select f?

-​ Constraints
-​ we want big enough frames to fit every job without

preempting it
-​ f >= max(Ci) for i=1,...,n

-​ In order to have a small table, f should divide H. Since H =
LCM(T1,...,Tn), f divides Ti for at least one task Ti

-​ Let F = H/f (F is integer).
-​ H is called major cycle and f is minor cycle

-​ We want frame size to be small so there is at least 1 frame
between task release time and deadline

-​ 2f - GCD(Ti, f) <= Di
-​ deadline for i

-​ Summary
-​ H = LCM (T1,...,Tn)
-​ f >= max(Ci) for i=1,...,n
-​ f should divide H
-​ 2f - GCD(Ti, f) <= Di

-​ How to find f?
-​ Start with f >= max(execution time)
-​ Then find f’s that divides H
-​ Finally, check each GCD equation value for each of these

-​ 3 tasks (in helicopter control system)

-​ 180x per second, computation time 1 ms
-​ 90x per second, computation time 3 ms
-​ 30x per second, computation time 10 ms

-​ Hard real-time jobs have a hard deadline, doesn’t matter if it’s done early
-​ Always schedule aperiodic jobs at the beginning (interrupt based first)
-​ Slack stealing

-​ There are periods of idle time on the CPU
-​ Without slack stealing, do periodic hard tasks first and then fill in
-​ With slack stealing, can move periodic hard tasks later and prioritize the

aperiodic jobs
-​

10/04/21

-​ 3 big questions
-​ Where am I?

-​ GPS + digital maps
-​ Where to go?

-​ Mission/route planning
-​ What’s around me?

-​ 360 sensing
-​ Sensor types

-​ GPS, LIDAR, Images, CAN, WIFI/5G, Integrated Display, Ultrasonic
Sensors, Full-operational Arch, Multicore, FPGA, FlexRay, Ethernet,
DSRC

-​ Need to do the above with large volume, long operation time, uncertain operation
environment, reliably and safely, mixed traffic

-​ SAE levels
-​ 0: No automation
-​ 1: Driver assistance
-​ 2: Partial assistance
-​ 3: Conditional automation

-​ From here an above, any issues are human fault (human final decision)
-​ 4: High automation

-​ From here beyond, any issues are manufacturer’s fault
-​ 5: Full automation

-​ Most things we talk about are level 4+
-​ AV system components

-​ Environment sensing -> perception and planning -> motion control and vehicle
operation

-​ Needs to be performant, safe, and affordable
-​ Approach for automated driving

-​ L5 (gradually pull back to lower level)
-​ Object detection

-​ Multi LIDARS and multi cameras and detailed HD map
-​ Working environment

-​ Day + night with rain and snow
-​ Image annotation

-​ Semi-automatic with human assistance
-​ Training technique

-​ No pre-training/reinforced learning
-​ Limitations

-​ Works better on predefined routes
-​ L1/L2/L3/L4 (gradually grow to higher level)

-​ Object detection
-​ Single camera and multi radar sensors

-​ Working environment
-​ Daytime with bright light

-​ Image annotation
-​ Manual annotation by human

-​ Training technique
-​ Supervised training

-​ Limitations
-​ Fallback to human driver

-​ AV cost
-​ $$$, space, driving range, warranty, maintenance

-​ Perception
-​ Camera, LIDAR, Radar

-​ Different advantages
-​ Camera (Best sensor for color and texture interpretation)
-​ LIDAR (High precision detection without light/sound

interference)
-​ Radar (Cost effective, good as backup sensor)

-​ Different disadvantages
-​ Camera (High processing required)
-​ LIDAR (Needs HD map, requires huge amounts of data,

expensive)
-​ Radar (Poor resolution, 2D information only)

-​ Processing
-​ Algorithms

-​ HOG, sobel, SVM
-​ Alexnet, Squeezenet, SSD, YOLOv3
-​ Optical flow, ORB

-​ Timing characteristics
-​ Constant execution time
-​ Need to detect multiple at once
-​ Tradeoff between processing delay and accuracy

-​ Some algorithms can do it fairly well with small
amount of time, can possibly spend longer to
compute higher accuracy result

-​ Single frame processing delay - batch processing may be
limited

-​ Time synchronization among multiple sources
-​ Hardware computing platform

-​ Multicore, many-core, accelerators (DSP, GPU, FPGA)
-​ Challenges

-​ High performance, high computation, safe and secure, affordable,
optimization with large number of parameters

-​ Focus on vision
-​ Vision processing are main components posing challenges
-​ Lidar processing shares challenges (less computation

load)
-​ Radar is light computing workload

-​ Deep learning / neural network for vision processing
-​ Inference of pre-trained CNN
-​ Special cases for adaptive learning or reinforcement

learning
-​ Development process

-​ Algorithm developed on machine -> portable across different computing
platforms -> enable system level optimization and analyzability -> meet
requirements on timing, safety, security

-​ Solution concepts
-​ Objective: run a CNN inference algorithm effectively and efficiently

-​ Computation reduction
-​ Quantization (32bit -> 16bit) and pruning
-​ Can binarize CNN (use bit operations instead of floating

point precision)
-​ Selective processing

-​ Crop regions of interests
-​ Use camera to guide LIDAR

-​ Architecture optimization
-​ Hardware acceleration

-​ Multi-core CPU
-​ GPU
-​ FPGA
-​ TPU

-​ Parallel processing
-​ Device sharing

-​ Multiple vision applications using different resources
-​ Need to synchronize using locks

-​ Preemptable CNN

-​ Meaningful result only retrieved at the end of the process
-​ Models get more complex with more layers
-​ Easy to schedule if preemptable
-​ Deal with different levels of CNN importance/criticality
-​ Desired CNN with fine-grain execution control

10/06/21

-​ Schedules
-​ Earliest deadline first (EDF) schedule

-​ Preemptive dynamic priority scheduling
-​ Job with earliest deadline has priority

-​ Non-preemptive or multiple processors is non-optimal
-​ Least slack time (LST)

-​ Preemptive priority scheduling based on slack time (deadline - execution
time)

-​ Optimal for preemptive single processor schedule
-​ Schedule anomaly

-​ The schedule fails even after we reduce job execution times
-​ Preemptive is much easier than non-preemptive scheduling

-​ Aperiodic tasks
-​ A periodic server follows the cyclic schedule and looks at aperiodic task queue
-​ Slack stealing

-​ Slack time is how much each periodic task can be delayed
-​ Assume all tasks must be completed before the end of their frames and

aperiodic tasks are not preemptable
-​ Do slack stealing at beginning of each frame and examine queue when

idle
-​ Scheduling goal

-​ No deadlines missed for all jobs invoked by a set of periodic tasks
-​ Scheduling algorithm

-​ Determines when to execute a task (EDF, RM)
-​ Schedulability analysis

-​ Guarantee no deadline misses of a given task under a scheduling algorithm
-​ Real-time scheduling
-​ Assumptions

-​ Single processor
-​ Hard deadline
-​ Independent periodic tasks
-​ Relative deadline = period
-​ Preemptable without any limit
-​ No overhead for context switch

-​ Why should you start with a simple theoretical model?
-​ Shannon for example started with a useless impractical simple model

-​ After solving the simple model, he started adding complexity back into the model,
one by one

-​ Priority-driven scheduling
-​ Task-level fixed-priority (TFP): all jobs of periodic task have the same fixed

priority
-​ RM (rate-monotonic)

-​ Task-level dynamic-priority: different priorities to individual jobs of a periodic task
-​ Job-level fixed-priority (JFP): priority of each job is fixed

-​ EDF (earliest deadline first)
-​ Job-level dynamic-priority (JDP): priority of each job can change over time

-​ LSTF (least slack time first)
-​ In analysis, what is the maximum utilization (rather than time)

-​ Execution time / period

10/13/21

-​ Rate monotonic (RM)
-​ A job is encountering worst-case (critical instant)

-​ Shift each task so that its first job is released at t, just shifting the arrival
times

-​ If you can meet the job at the critical instant, then you can meet it in all cases
-​ Utilization based analysis

-​ Using CPU at 69.3%, you will be guaranteed to meet all jobs across a
task set

-​ U <= n(2^(1/n) - 1.0) -> 0.69
-​ Calculate least upper bound of processor utilization

-​ This is a sufficient condition, not a necessary condition
-​ Example for 2 tasks

-​ n = tasks, p = periods, t = tasks, e = execution times, U =
utilization

-​ if n=2, solve the equation and = 0.828
-​ Let p2 < 2*p1
-​ Determine the maximum schedulable e2
-​ p2 <= p1 + e1, max(e2) = p1 - e1
-​ p2 is in [p1, 2*p1]

-​ Trying to have maximum job execution time without missing deadlines
-​ Minimum U occurs when p2 = p1 + e1, where U = e1/p1 +

(p1-e1)/(p1+e2)
-​ Can take the derivative for p1 and set (partial derivative) dU/dp1 =

0
-​ We get e1=(2^(½)-1.0)p1 and U=0.828

-​ If total utilization is less than utilization upper bound function, then we’re
all good

-​ Execution time / period = utilization (.753)

-​ .753 < .779
-​ Response-time analysis

-​ an+1=ei+sum(an/pj)ej
-​ Test terminates when an+1 = an
-​ n tasks, testing schedulability of each task

-​ Go down the line of tasks by priority and whether they’re
schedulable (assuming unlimited preemption)

-​ an is estimation of response time or completion time (sums of higher
priority tasks) of task i

-​ Task i is schedulable if its response time is before its deadline:
-​ an <= pi
-​ an is the response time of Ti

-​ e1 = 40, e2 = 40, e3 = 100, p1 = 100, p2 = 150, p3 = 350
-​ a0 = sum(ej) = e1+e2+e3 = 180
-​ a1 = 100 + 180/100(40) = 180/150(40) = 100 + 80 + 80 = 260
-​ a2 = ei + sum(a1/pj)ej = 100 + 260/100(40) + 260/150(40) = 300
-​ a3 = 100 + 300/100(40) + 300/150(40) = 300

-​ This works because time-demand analysis is based on the critical instant
-​ If Ji is done at t, then the total work must be done in [0,t] is (from Ji

and all higher priority tasks):
-​ wi(t)=ei+sum(t/pk)ek

10/15/21

-​ Round robin
-​ Similar to FCFS scheduling
-​ CPU bursts (execution) assigned with time quantum
-​ Advantages

-​ Fairness equal share of CPU
-​ New created process added to end of queue
-​ Time sharing, each job/time slot has time quantum
-​ Each process has a chance to reschedule

-​ Disadvantage
-​ Low throughput
-​ Larger waiting time and response time
-​ Context switches
-​ Gantt chart becomes very big
-​ Small quantums = time consuming

-​ Metrics
-​ Completion time

-​ Time when process completes its execution
-​ Turnaround time

-​ Time difference between completion time and arrival time
-​ Waiting time

-​ Time difference between turnaround time and burst time
-​ Rate-monotonic (RM)

-​ Higher period frequency is higher priority task for RM
-​ Response time analysis

-​ Exact test, use if upper bound test is indeterminate
-​ One analysis per task

-​ Stop conditions
-​ Deadline violation Rwci > Di = pi
-​ Convergence Rwci(m+1) = Rwci(m)

-​ RM Example 1
-​

Ti pi ei

1 2 0.5

2 3 0.5

3 6 2

-​ U = 0.5/2 + 0.5/3 + 2/6 = 0.75
-​ U(3) = 0.779
-​ 0.75 < 0.779
-​ Sufficient, tasks are schedulable

-​ RM Example 2
-​

Ti pi ei

1 2 0.5

2 3 0.5

3 6 3
-​ U = 0.92
-​ U(3) = 0.779
-​ 0.92 > 0.779
-​ Is T1 schedulable?

-​ Rwc1(0) = C1 = 0.5 <= 2
-​ Is T2 schedulable?

-​ Rwc2(0) = C1 + C2 = 1
-​ Rwc2(1) = ceil(Rwc2(0)/T1) * C1 + C2 = ceil(½) * 0.5 + 0.5 = 1
-​ Converged, 1<= 3

-​ Is T3 schedulable?
-​ Rwc3(0) = C1 + C2 + C3 = 0.5 + 0.5 + 3 = 4
-​ Rwc3(1) = ceil(Rwc3(0)/T1) * C1 + ceil(Rwc3(0)/T2) * C2 + C3 =

-​ ceil(4/2) * 0.5 + ceil(4/3) * 0.5 + 3 = 5.5
-​ Rwc3(2) = ceil(Rwc3(1)/T1) * C1 + ceil(Rwc3(1)/T2) * C2 + C3 =

-​ 5.5
-​ Converged, 5.5 <= 6

-​ RM Example 3
-​

Ti ei

3 1

4 1

6 2.1

-​ 0.93 > 0.779
-​ Rwc3(1) = ceil(Rwc3(0)/T1) * C1 + ceil(Rwc3(0)/T2) * C2 + C3 = 6.1
-​ 6.1 > 6, deadline violation

-​ Number 6 don’t try to derive the equation from the original RM equation

10/20/21

-​ RM Transient Overload
-​ If task with lower period is not critical to the underlying application
-​ To deal with this, consider period transformation, period aggregation, or period

splitting
-​ Could drop the task altogether, but this is non-desirable
-​ Replace the problematic task with 2 tasks, each with 2x original period

-​ RM Schedulability With Interrupts
-​ Interrupts should receive higher priority than application
-​ Interrupt handler executes higher priority irrespective of its period
-​ Interrupt processing can delay execution of app tasks with shorter periods
-​ This interrupt processing must be accounted for in the schedulability model. How

to change the UB test?
-​ UB test with interrupt

-​ Test is applied to each task
-​ Determine effective utilization (fi) of each task i using:

-​ Sumj=Hn(ei/pi) + ei/pi + 1/pi * Sumk=H1(ek)
-​ Compare effective utilization (fi) to bound U(n)

-​ n = num(Hn + 1) where num(Hn) = number of tasks in set Hn
-​ Hn is the set of tasks that will preempt current task more than once

with period less than Di
-​ H1 is the set of tasks that preempt current task only once with

period greater than Di
-​ Priority inversion

-​ Delay to a task’s execution is when blocking occurs from lower-priority tasks
-​ If the tasks share the same resources, this can happen
-​ We need to identify and evaluate sources of priority inversion
-​ Sources

-​ Synchronization and mutual exclusion (mutex locks)
-​ Non-preemptable regions of code
-​ FIFO queues

-​ How to deal with priority inversion in schedulability analysis
-​ Task schedulability is affected by:

-​ Preemption: 2 types
-​ Occurs several times per task period OR
-​ Occurs once per period

-​ Execution: Once per period
-​ Blocking: At most once per period for each resource

-​ Schedulability formulas are modified to add a “blocking” or “priority inversion”
term

-​ Response time analysis with blocking
-​ an+1 = Bi + ei + Sum(an/pi)ei
-​ Perform test as done before, including blocking effect

-​ Where a0 = Bi + Sum(ej)
-​ Example

-​ Where data structure is 30 msec to access
-​ T3 just enters the critical section, then T2 preempts T3 while T1 is still

waiting for the data structure, so T1 must wait for T2 to finish its
computation

-​

Task Period Execution
Time

Priority Blocking
Delay

Deadline

T1 100 25 High 30+50 100

T2 200 50 Medium 0 200

T3 300 100 Low 0 300

-​ f1 = e1/p1 + B1/p1 = 25/100 + 80/100 = 1.05
-​ 1.05 > 1.00, not schedulable

-​ f2 = e1/p1 + e2/p2 = 0.5
-​ 0.5 < U(2)

-​ f3 = e1/p1 + e2/p2 + e3/p3 = 0.84
-​ 0.84 > U(3)

-​ Higher priority task is not always more schedulable than lower priority
tasks because of this

-​ EDF schedulability analysis
-​ EDF is schedulable iff U <= 1.0

10/27/21 - Priority Inversion

-​ Usually use mutex locks
-​ Priority inversion occurs with shared resources or critical section

-​ High priority task wants to access locked resource, but it has to wait since low priority
task has locked it

-​ Low priority task runs for a bit
-​ Then medium priority task preempts it
-​ Low priority task finishes and unlocks the resource
-​ Finally high priority task can run

-​ Normally, priority inversion is not harmful
-​ But it could cause serious problems

-​ Mars Pathfinder
-​ Landed on Mars on July 4th 1997
-​ Surface operations, daily images of Mars, daily weather reports from surface of

Mars
-​ On July 12th, there were technical problems (communication errors)
-​ On July 19th, the problem was solved
-​ Turns out, a CTO of the RTOS for Pathfinder said that there was a priority

inversion problem
-​ Pathfinder had 3 tasks:

-​ TH: information bus task (short, frequent, quick responses)
-​ TM: communication task (sending pictures to Earth)
-​ TL: meteorological task (long task)
-​ TH had to wait very long because of priority inversion
-​ Usually you build a timeout mechanism to do a total system reset

-​ You can drive any system to an unknown state (digital upset) which causes a total
system reset

-​ Timeout based reset mechanism can be exploited
-​ Solution is a priority inheritance protocol or priority ceiling protocol

