
Tangent and Normal Lines

Find the gradient function of $f(x) = x^2 - \frac{4}{\sqrt{x}}$.

Hence find the gradient of the tangent to f(x) at the point where x = 4.

- * A tangent to a curve is a line that _____ the curve without _____ over.
- * A normal to a curve is a line that is ______ to the tangent line.

Find the slope of the tangent line at x = 1.

Find the equation of the tangent line.

Find the slope of the normal line at x = 1.

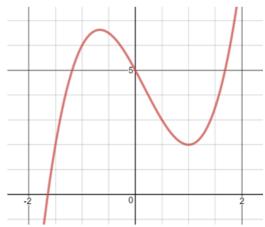
Find the equation of the normal line.

The function $f(x) = 3x^2 - 2$ is given.

Find:

a the derivative of the function at x = 1

b the equation of the tangent to the curve at x = 1


c the equation of the normal to the curve at x = 1

Shown is a graph of

$$f(x) = 2x^3 - x^2 - 4x + 5$$

Find the gradient at x = 0.5

Then, find the equation of the tangent line at that point.

Confirm on the graph...

Find the coordinates of the points on the graph of $f(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 - 8x + 7$ where the gradient is 4.

Find the equation(s) of any horizontal tangents to the curve $y = 2x^3 + 3x^2 - 12x + 1$.