ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ΓΟCT P 57044—

(проект, первая редакция)

РЕСУРСОСБЕРЕЖЕНИЕ Обращение с отходами. Характеристики вторичных поливинилхлоридов

Настоящий проект стандарта не подлежит применению до его утверждения

Москва Российский институт стандартизации 20

Предисловие

1 РАЗРАБОТАН Федеральным государственным унитарным предприятием
«Центр Экологической Промышленной Политики» (ФГАУ «НИИ «ЦЭПП»)
2 BHECEH Техническим комитетом по стандартизации ТК 231 «Отходы и
вторичные ресурсы»
3 УТВЕРЖДЕН и ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по
техническому регулированию и метрологии от «» 202 г. №
4 Настоящий стандарт разработан с учетом основных нормативных положений
европейского стандарта ЕН 15346 «Полимеры. Вторичные полимеры.
Характеристика вторичных поливинилхлоридов» (EN 15346 "Plastics - Recycled

Наименование настоящего стандарта изменено относительно наименования указанного европейского стандарта для приведения в соответствие с ГОСТ Р 1.5

5 B3AMEH ΓΟCT P 57044-2016

Plastics – Characterization of polyvinylchloride (PVC) recyclates")

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.rst.gov.ru)

© Оформление. ФГБУ «Институт стандартизации», 202

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1	Область применения								
2	Нормативные ссылки								
3	Термины и определения								
4	Общие положения								
5	Классиф	икац	ия характеристик вторичных поливинилхлоридов						
6	Оценка х	арак	теристик вторичных поливинилхлоридов						
7	Обеспече	ение	качества вторичных поливинилхлоридов						
Прил	тожение	Α	(справочное) Перечень стандартов, устанавливающих						
			характеристики вторичных поливинилхлоридов, на которые						
			распространяется область применения настоящего						
			стандарта						
Прил	пожение	Б	(справочное) Способ измерения размера частиц						
			тонкоизмельченного вторичного поливинилхлорида						
			основанный на применении просеивания						
Прил	пожение	В	(справочное) Способ измерения размера частиц						
			грубоизмельченного вторичного поливинилхлорида						
			основанный на применении просеивания						
Прил	тожение	Γ	(обязательное) Установление пригодности вторичных						
			поливинилхлоридов к обработке каландрованием						
Прил	тожение	Д	(обязательное) Установление пригодности вторичных						
			поливинилхлоридов к обработке экструзией						
Прил	тожение	Е	(справочное) Типичные составы композиций на основе						
			поливинилхлорида						
Прил	тожение	Ж	(справочное) Определение количества нерастворимых в						
			тетрагидрофуране примесей						
Библ	тиография	я							

Введение

Настоящий стандарт разработан на основе европейского стандарта EN 15346 [1], подготовленного Техническим комитетом Европейского комитета по стандартизации CEN/TC 249 «Plastics».

EN 15346 является частью серии публикаций CEN по переработке вторичных полимеров. Соответствующие документы представлены в тексте настоящего стандарта.

В настоящем стандарте приведены наиболее важные характеристики и соответствующие им методы испытаний для оценки отдельных партий вторичных поливинилхлоридов, предназначенных для использования при производстве полуфабрикатов и/или готовой продукции.

Утверждение настоящего стандарта направлено на развитие отрасли переработки полимерсодержащих отходов, производства полимерного вторичного сырья и повышению доли использования вторичного сырья при производстве готовой продукции в соответствии с принципами экономики замкнутого цикла.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

РЕСУРСОСБЕРЕЖЕНИЕ

Обращение с отходами. Характеристики вторичных поливинилхлоридов

The resource saving. Waste management. Characteristics of polyvinylchloride recyclates

Дата введения — 202_ - ___ -

1 Область применения

Настоящий стандарт устанавливает характеристики вторичного сырья на основе поливинилхлорида, предназначенного для использования при производстве полуфабрикатов и/или готовой продукции, а также соответствующие методы испытаний для определения стабильности этих характеристик.

Настоящий стандарт распространяется на характеристики вторичного сырья на основе поливинилхлорида по стандартам, приведенным в Приложении А, полученных из отходов, содержащих поливинилхлорид.

Настоящий стандарт не распространяется на характеристики вторичных ресурсов – полимерсодержащих отходов в соответствии со стандартом ЕН 15347 [2].

Требования, установленные настоящим стандартом, предназначены, для добровольного применения в нормативно-правовой, нормативной, технической и проектно-конструкторской документации, а также в научно-технической, учебной и справочной литературе применительно к процессам обращения с отходами на этапах их технологического цикла с вовлечением соответствующих вторичных ресурсов в хозяйственную деятельность в качестве вторичного сырья, обеспечивая при этом сохранение и защиту окружающей среды, здоровья и жизни людей.

FOCT P 57044—

(проект, первая редакция)

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 25139 Пластмассы. Метод определения сыпучести

ГОСТ Р 52104 Ресурсосбережение. Термины и определения

ГОСТ Р 53692 Ресурсосбережение. Обращение с отходами. Этапы технологического цикла отходов

ГОСТ Р 54098 Ресурсосбережение. Вторичные ресурсы и вторичное сырье. Термины и определения

ГОСТ Р 72006 Устойчивое развитие. Система менеджмента устойчивого развития производства пластмасс и изделий из них. Требования

ГОСТ Р ИСО 9000 Системы менеджмента качества. Основные положения и словарь

ГОСТ Р ИСО 14050 Менеджмент окружающей среды. Словарь

Примечание – При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии по стандартизации в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины согласно ГОСТ Р ИСО 9000, ГОСТ Р ИСО 14050, ГОСТ Р 52104, ГОСТ Р 54098, а также следующие термины с соответствующим определением:

- 3.1 **вторичные поливинилхлориды:** Отходы поливинилхлорида, образовавшиеся в результате его производства и/или потребления.
- 3.2 **партия:** Количество вторичного поливинилхлорида, обладающее однородными характеристиками в пределах установленных допусков.
- 3.3 остаток на сите: Массовая доля пробы, оставшаяся на сите после окончания испытания.

Примечание – Остаток на сите выражается в процентах (массовая доля).

- 3.4 **остаток в контейнере:** Массовая доля пробы (в процентах), оставшаяся в нижней части контейнера под набором сит или под одним ситом после окончания испытания.
- 3.5 **средний размер частицы:** Единственное значение размера, округленное до 0,001 мм и представляющее собой преобладающий размер частиц для всей испытуемой пробы.

Примечания

- 1 В приложении Б приводится способ измерения размера частиц тонкоизмельченного вторичного поливинилхлорида, основанный на применении просеивания.
- 2 В приложении В приводится способ измерения размера частиц грубоизмельченного вторичного поливинилхлорида, основанный на применении просеивания.

4 Общие положения

4.1 В настоящем стандарте приводятся наиболее важные характеристики и соответствующие им методы испытаний для оценки отдельных партий вторичных поливинилхлоридов, предназначенных для использования в производстве вторичного сырья, полуфабрикатов и/или готовой продукции.

FOCT P 57044—

(проект, первая редакция)

- 4.2 Настоящий стандарт предназначен для согласования технических условий между поставщиком и покупателем вторичных поливинилхлоридов.
- 4.3 Переработка полимерных отходов в качестве вторичных ресурсов представляет собой один из видов рекуперации сырья, предназначенный для ресурсосбережения (первичного сырья, водных и энергетических ресурсов), позволяющий одновременно свести к минимуму вредные выбросы в атмосферу, сбросы в водные объекты и на рельеф местности, размещение отходов, а также любые воздействия на здоровье человека.
- В приложении Г приводится метод установления пригодности вторичных поливинилхлоридов к обработке каландрованием.
- В приложении Д приводится метод установления пригодности вторичных поливинилхлоридов к обработке экструзией.
- 4.4 Воздействие на окружающую среду переработки полимерных отходов в качестве вторичных ресурсов должно оцениваться по всему технологическому циклу обращения с отходами, с момента их образования до их конечного размещения.
- 4.5 Целесообразно принимать во внимание что переработка в качестве вторичных ресурсов является лучшим с экологической точки зрения способом обработки отходов:
- воздействие на окружающую среду при предлагаемой схеме утилизации отходов должны быть более низким по сравнению с другими вариантами обработки отходов;
- в целях обеспечения устойчивого функционирования объектов по утилизации отходов должны быть определены существующие или потенциальные рынки сбыта вторичного сырья;
- схемы сбора и сортировки полимерных отходов должны быть разработаны таким образом, чтобы получать разделенные на фракции вторичные полимеры, совместимые с существующими технологиями переработки и с (изменяющимися) потребностями выявленных рынков сбыта вторичного сырья при наименьших издержках для общества.

5 Классификация характеристик вторичных поливинилхлоридов

- 5.1 Характеристики вторичных поливинилхлоридов, которые должны определяться для каждой партии вторичных поливинилхлоридов, подразделяют на два типа:
 - обязательные, для описания всех вторичных поливинилхлоридов;
- дополнительные, являющиеся необходимыми для описания отдельных видов вторичных поливинилхлоридов в соответствии с требованиями потребителя и планируемыми вариантами использования.
 - 5.1.1 К обязательным характеристикам относят:
 - объемную плотность;
 - содержание золы;
 - цвет;
 - твердость;
 - наличие примесей;
 - размер частиц и их распределение;
 - форму.
 - 5.1.2 К дополнительным характеристикам относят:
 - скорость течения сухого материала;
 - сыпучесть;
 - плотность;
 - пригодность переработки методами каландрования и/или экструзии;
 - остаточную влажность;
 - предел текучести при растяжении;
 - напряжение разрыва при растяжении;
 - термическую стабильность.
- 5.2 Для обеспечения верификации и/или входного контроля при использовании вторичного поливинилхлорида поставщик вторичного поливинилхлорида должен предоставить необходимую информацию 0 материальном составе вторичного поливинилхлорида соответствии С требованиями покупателя.

6 Оценка характеристик вторичных поливинилхлоридов

- 6.1 Характеристики вторичных поливинилхлоридов следует оценивать с помощью методов испытаний, приведенных в таблице 1. Поставщик вторичного поливинилхлорида должен при наличии возможности предоставлять информацию о первоначальном применении материала.
- 6.2 Сертификат, в котором приводится описание результатов испытания каждой партии вторичного поливинилхлорида, предоставляется поставщиком вторичного поливинилхлорида покупателю по запросу.

Таблица 1 – Характеристики вторичных поливинилхлоридов

Характеристика	Единица	Примен	НИМОСТЬ	Метод испытания	Примечание			
	измерения	Непластифированный	Пластифицированный		·			
		поливинилхлорид	поливинилхлорид					
Основные								
Объемная	кг/м ³	Да	Да	Приложение Е	_			
плотность								
Содержание золы	%	Да	Да	ЕН ИСО 3451-5 [3]	Содержание наполнителей и минеральных веществ			
Цвет	_	Да	Да	Внешний осмотр	Неокрашенный, одноцветный, смешанный			
Твердость	_	Нет	Да	ЕН ИСО 868 [4]	Для каландрирования вместо твердости может оцениваться жесткость. См. приложение Б			
Примеси	%	Да	Да	Приложение Ж	Может использоваться альтернативный метод, согласованный обеими сторонами			
Размер частиц и их распределение	г, %	Да	Да	Приложение Ж для крошки, Приложение В для микрогранул	Распределение частиц необходимо для материалов с малым размером частиц			
Форма	_	Да	Да	Внешний осмотр	Измельченный материал, гранулы, частицы			
			Дополнительные					
Скорость течения	С	Да	Да	EH ИСО 6186 [5]	Рекомендуется для			
сухого материала					измельченных материалов			
					или небольших по размеру			
					частиц вторичного			
					поливинилхлорида			

ГОСТ Р 57044—

(проект, первая редакция)

Окончание таблицы 1

Характеристика	Единица	Примен	НИМОСТЬ	Метод испытания	Примечание
	измерения	Непластифированный поливинилхлорид	Пластифицированный поливинилхлорид		
Сыпучесть материала	С	Да	Да	ГОСТ 25139	Определяют при температуре от 15 °C до 35 °C и относительной влажности 45 %-75 % на воронках диаметром выходного отверстия 14,0 мм
Плотность	кг/м ³	Да	Да	ЕН ИСО 1183-1–2025 (Метод А) [6]	_
Предел текучести при растяжении	МПа	Да	Да	ЕН ИСО 527-1 [7], ЕН ИСО 527-2 [8]	_
Напряжение разрыва при растяжении	%	Да	Да	ЕН ИСО 527-1 [7], ЕН ИСО 527-2 [8]	_
Термическая стабильность	МИН	Да	Да	ЕН ИСО 182-1 [9], ЕН ИСО 182-2 [10], ЕН ИСО 182-3 [11]	Следует указать, какой стабилизатор используется
Определение точки размягчения по Вика	°C	Да	Нет	ЕН ИСО 306 [12]	_

Примечания

¹ Испытания могут проводиться по согласованию между покупателем и поставщиком.

² Объемная плотность вторичных поливинилхлоридов зависит от состава композитных материалов на основе поливинилхлорида.

7 Обеспечение качества вторичных поливинилхлоридов

7.1 Для обеспечения уверенности покупателя в качестве вторичного поливинилхлорида поставщик должен вести учет контроля качества и идентификацию, в том числе поступающих материалов и готовой продукции.

Примечание — Система менеджмента устойчивого развития, сертифицированная согласно ГОСТ Р 72006, может послужить гарантией прослеживаемости вовлечения и качества вторичного поливинилхлорида.

- 7.2 Номенклатура показателей и стандартное отклонение или диапазон значений в пределах и между партиями вторичных поливинилхлоридов должны быть согласованы между поставщиком и покупателем.
- 7.3 Если требуется описание материалов отходов, подвергнутых переработке, или предшествующая история таких материалов перед получением вторичного поливинилхлорида, а аналитический метод извлечения подобной информации отсутствует, покупателю по его запросу должно быть предоставлено надежное документальное подтверждение.

Примечание — ГОСТ Р 53692 устанавливает надлежащий процесс переработки и предоставляет подробную информацию о прослеживаемости и об оценке переработанных материалов.

Приложение A (справочное)

Перечень стандартов, устанавливающих характеристики вторичных поливинилхлоридов, на которые распространяется область применения настоящего стандарта

Таблица A.1 – Перечень стандартов, устанавливающих характеристики вторичных поливинилхлоридов

Nº	Стандарт	Наименование стандарта							
п/п	(оригинальный	(наименование оригинального стандарта)							
	стандарт)								
1	EH 15346	Полимеры. Вторичные полимеры. Характеристика							
		вторичных поливинилхлоридов							
	(EN 15346)	(Plastics - Recycled Plastics - Characterization of							
		polyvinylchloride (PVC) recyclates)							
2	ЕН ИСО 182-1	Полимеры. Определение тенденции компаундов и продуктов							
		на основе гомополимеров и сополимеров винилхлорида к							
		выделению хлорида водорода и других кислотных продуктов							
		при повышенных температурах. Часть 1. Метод с							
		применением конго красного							
	(EN ISO 182-1)	(Plastics - Determination of the tendency of compounds and							
		products based on vinyl chloride homopolymers and copolymers							
		to evolve hydrogen chloride and any other acidic products at							
		elevated temperatures - Part 1: Congo red method)							
3	ЕН ИСО 182-2	Полимеры. Определение тенденции компаундов и продуктов							
		на основе гомополимеров и сополимеров винилхлорида к							
		выделению хлорида водорода и других кислотных продуктов							
		при повышенных температурах. Часть 2. Метод измерения							
		На							
	(EN ISO 182-2)	(Plastics - Determination of the tendency of compounds and							
		products based on vinyl chloride homopolymers and copolymers							
		to evolve hydrogen chloride and any other acidic products at							
		elevated temperatures - Part 2: pH method)							

Продолжение таблицы А.1

	1	
Nº	Стандарт	Наименование стандарта
п/п	(оригинальный	(наименование оригинального стандарта)
	стандарт)	
4	ЕН ИСО 182-3	Полимеры. Определение тенденции компаундов и продуктов
		на основе гомополимеров и сополимеров винилхлорида к
		выделению хлорида водорода и других кислотных продуктов
		при повышенных температурах. Часть 3.
		Кондуктометрический метод
	(EN ISO 182-3)	(Plastics - Determination of the tendency of compounds and
		products based on vinyl chloride homopolymers and copolymers
		to evolve hydrogen chloride and any other acidic products at
		elevated temperatures - Part 3: Conductometric method)
5	EH ИСО 1269	Полимеры. Гомополимеры и сополимеры винилхлорида.
		Определение содержания летучих веществ (включая воду)
	(EN ISO 1269)	(Plastics - Homopolymer and copolymer resins of vinyl chloride -
		Determination of volatile matter (including water))
6	ЕН ИСО 3451-5	Полимеры. Определение содержания золы. Часть 5.
		Поливинилхлорид
	(EN ISO 3451-5)	(Plastics - Determination of ash - Part 5: Polyvinylchloride)
7	ИСО 565	Сита контрольные. Проволочная ткань, перфорированные
		пластины и листы, изготовленные гальваническим методом.
		Номинальные размеры отверстий
	(ISO 565)	Test Sieves - Metal Wire Cloth, Perforated Metal Plate and
		Electroformed Sheet - Nominal Sizes of Openings
8	ИСО 868	Полимеры и эбонит. Определение индентометрической
		твердости с помощью дюрометра (твердость по Шору)
	(ISO 868)	Plastics and ebonite — Determination of indentation hardness
		by means of a durometer (Shore hardness)
9	EH ИСО 6186	Полимеры. Определение текучести
	(EN ISO 6186)	(Plastics – Determination of pourability)
10	ЕН ИСО 1183-1	Полимеры. Методы определения плотности неячеистых
-		полимеров. Часть 1. Метод погружения, метод с
		применением жидкостного пикнометра и метод титрования
	(EN ISO 1183-1)	(Plastics — Methods for determining the density of non-cellular
		plastics. Part 1: Immersion method, liquid pycnometer method
		and titration method)
		and utation method)

ГОСТ Р 57044—

(проект, первая редакция)

ГОСТ Р 57044—

(проект, первая редакция)

Окончание таблицы А.1

Nº	Стандарт	Наименование стандарта
п/п	(оригинальный	(наименование оригинального стандарта)
	стандарт)	
11	ЕН ИСО 527-1	Полимеры. Определение механических свойств при
		растяжении. Часть 1. Общие принципы (включая Изменение
		1:1994)
	(EN ISO 527-1)	(Plastics - Determination of tensile properties - Part 1: General
		principles (including Corr 1:1994))
12	ЕН ИСО 527-2	Полимеры. Определение механических свойств при
		растяжении. Часть 2. Условия испытаний для литьевых и
		экструзионных полимеров (включая Изменение 1:1994)
		(Plastics - Determination of tensile properties - Part 2: Test
	(EN ISO 527-2)	conditions for moulding and extrusion plastics (including Corr
		1:1994))
13	ЕН ИСО 306	Полимеры. Термопластичные материалы. Определение
		точки размягчения по Вика
	(EN ISO 306)	(Plastics - Thermoplastic materials - Determination of Vicat
		softening temperature (VST))
14	ЕН ИСО 472	Полимеры. Словарь
	(EN ISO 472)	(Plastics - Vocabulary)
15	ГОСТ 25139	Пластмассы. Метод определения сыпучести

Приложение Б (справочное)

Способ измерения размера частиц тонкоизмельченного вторичного поливинилхлорида, основанный на применении просеивания

Б.1 Общие сведения

Способ измерения размеров частиц тонкоизмельченного вторичного поливинилхлорида основан на измерении количества вторичного поливинилхлорида, оставшегося на наборе сит с различными диаметрами отверстий сетки.

С помощью механизированной вибрации пробу вторичного поливинилхлорида фильтруют через одно сито или через набор сит с различными размерами отверстий сетки.

Если набор состоит из нескольких сит, то сита собирают в таком порядке по диаметру отверстий сетки, чтобы наибольший диаметр отверстий сетки приходился на верхнее сито.

Результаты выражают в количествах вторичного поливинилхлорида, оставшихся на различных ситах, или в виде среднего размера частиц (наиболее часто встречающегося размера) всей пробы.

Настоящий метод не рекомендуется использовать с ситами с размером отверстий сетки менее 0,125 мм.

Примечание – На практике определение размера и распределения частиц, содержащихся в измельченных переработанных соединениях поливинилхлорида путем отсева анализируют на листе миллиметровой бумаги с помощью металлической линейки.

Б.2 Реагенты

Оксид алюминия в порошке или его аналог, антистатическое средство.

Б.3 Аппаратура

- Б.3.1 Весы с погрешностью взвешивания не более ± 0,1 г, шкала и размер которых адаптированы к отдельным ситам и к остаточным вторичным материалам на этих ситах.
- Б.3.2 Сита номинальным диаметром 200 мм, соответствующие требованиям стандарта [13], дополненные крышкой и приемным контейнером. В настоящем методе испытаний используют сита со следующими отверстиями: 0,250, 0,500, 0,850 и 1,000 мм.
- Б.3.3 Встряхиватель для сит, включающий полностью механизированное устройство с автоматическим таймером, способный настроить сито или набор сит на единое вертикальное встряхивание, которое достигается с помощью «молотка» или «вибратора» (качалки) в конце каждой последовательности, со скоростью выколачивания, регулируемой в пределах (150 ± 15) ударов/мин.
 - Б.3.4 Щетка с мягкой щетиной.

FOCT P 57044—

(проект, первая редакция)

Б.3.5 Электрически надежное вакуумное пылеотсасывающее устройство, подходящее для удаления мелкодисперсных порошков.

Б.4 Порядок действий

- Б.4.1 Следует убедиться, что сито или сита, крышка и контейнер свободны от частиц переработанных материалов, используя очистку с помощью вакуумного пылеотсасывающего устройства и щетку с мягкой щетиной для извлечения всех трудноудаляемых остатков.
- Б.4.2 Проверяют сито или сита на отсутствие повреждений решетки и на отсутствие любой деформации формы отверстий решетки. Заменяют все дефектные решетки.
- Б.4.3 Взвешивают сито или по отдельности каждое сито из набора сит с точностью до 0,1 г.
 - Б.4.4 Взвешивают контейнер с точностью до 0,1 г.
- Б.4.5 Следует смонтировать сито или сита в контейнер: одно поверх другого. Укладка сит в стопку необходима для того, чтобы убедиться в том, что сита собраны в таком порядке по диаметру отверстий сетки, при котором наибольший диаметр отверстий сетки приходится на верхнее сито.

Примечания

- 1 При использовании стопки сит для определения среднего размера частиц (см. Б.6.3) необходимо подобрать размер отверстий таким образом, чтобы доля материала, оставшегося на верхних ситах и в контейнере, составляла не более 4,0 % испытуемого образца.
- 2 Подбор сит осуществляют, исходя из наличия оценочного распределения размеров отверстий сетки.
 - 3 Возможное сочетание сит приведено в Б.3.2.
- Б.4.6 Отбирают из пробы образец для испытаний (50 \pm 0,1) г и добавляют антистатическое средство. Если в качестве антистатического средства используют оксид алюминия, следует добавить от 0,2 до 0,3 г оксида алюминия.
- Б.4.7 Смешивают образец для испытаний и антистатическое средство с помощью шпателя и переносят полученную смесь в непокрытое сито, избегая переполнения и пылеобразования. При необходимости используют щетку для перенесения полученной смеси.
- Б.4.8 Покрывают сито или набор сит крышкой и закрепляют в механизированном встряхивателе для просеивания.
- Б.4.9 Устанавливают таймер встряхивателя на 6 мин. с ближайшей минуты и подключают питание.
- Б.4.10 После окончания встряхивания аккуратно вытаскивают сито или сита, начиная с верхнего, и взвешивают каждое сито и контейнер вместе с их содержимым.

Б.5 Количество измерений размера частиц

Следует провести два измерения для каждого испытуемого образца.

Б.6 Измерение размера частиц и оформление результатов

Б.6.1 Целью испытания является вычисление средней массы (в граммах) вторичных материалов, оставшихся на сите с заданным размером отверстий, а также средней массы остатков в контейнере. Для каждого сита и для контейнера в целом вычисляют среднюю массу оставшихся в результате двух измерений вторичных материалов следующим образом:

$$m_1 - m_2 = m_3$$
 $m_4 - m_5 = m_6;$ (5.1)

$$(m_3 + m_6) / 2 = m_r$$
 (5.2)

где m_1 и m_4 – массы каждого из сит или контейнера с оставшимися на них вторичными материалами, установленные при первом и втором измерениях, г;

 m_2 и m_5 – массы каждого из сит или контейнера, установленные при первом и втором измерениях, г;

 m_3 и m_6 – массы оставшихся вторичных материалов на каждом из сит или в контейнере, установленные при первом и втором измерениях, г;

 m_{r} — средняя масса вторичных материалов, оставшихся в каждом из сит или в контейнере, г.

Примечание — Если значение m_r превышает 20 г для любого конкретного размера отверстий сита, то сетку считают непроницаемой и процесс нуждается в повторении с испытуемым образцом массой менее 50 г.

Б.6.2 Расчет долей (процентов) исследуемой пробы, оставшихся на каждом из сит или в контейнере, осуществляют по следующей формуле

$$R = 100 \ (m_r / m_s)$$
 (5.3)

где R – доля вторичных материалов, оставшаяся на сите или в контейнере, %;

 m_r – средняя масса крошки, оставшейся на каждом из сит или в контейнере, г;

 $m_{\rm s}$ – средняя масса двух взятых проб, г. Если использовалась проба меньше указанной (см. примечание в Б.6.1), значение $m_{\rm s}$ в формуле (Б.3) может быть принято равным в 50,2 г.

Таким образом, процентная доля, оставшаяся на сите или в контейнере вторичных материалов, может быть выражена как:

$$R = (100 / 50.2) m_r \tag{5.4}$$

ГОСТ Р 57044—

(проект, первая редакция)

Б.6.3 Расчет среднего размера частиц

Рассчитывают по формуле (Б.4) долю (в %) оставшихся проб для каждого из сит с различными отверстиями и для контейнера. Сумма этих значений для стопки сит и контейнера должна быть более чем 99 %, если это не подтверждается, то испытание должно быть повторено.

Б.7 Протокол испытаний

Протокол испытаний должен содержать следующую информацию:

- ссылку на настоящий стандарт;
- все подробности, необходимые для полной идентификации партии вторичных поливинилхлоридов;
 - среднюю массу пробы в граммах;
 - наименование использованного антистатического средства;
- массу и массовую долю (%) испытуемого образца, оставшуюся на ситах с различными размерами отверстий сетки, или средний размер частиц вторичных поливинилхлоридов;
 - дату проведения испытаний.

Приложение В (справочное)

Способ измерения размера частиц грубоизмельченного вторичного поливинилхлорида, основанный на применении просеивания

В.1 Общие сведения

Способ измерения размеров частиц грубоизмельченного вторичного поливинилхлорида основан на измерении количеств вторичного поливинилхлорида, оставшихся на наборе сит с различными диаметрами отверстий сетки.

Результаты выражают в количествах вторичного поливинилхлорида, оставшихся на различных ситах, или в виде среднего размера частиц (наиболее часто встречающегося размера) всей пробы.

Пробу фильтруют через одно сито или через набор сит с различными размерами отверстий сетки с помощью ручной или механизированной вибрации. Если набор состоит из нескольких сит, то сита собирают в таком порядке по диаметру отверстий сетки, чтобы наибольший диаметр отверстий сетки приходился на верхнее сито.

В.2 Аппаратура

- В.2.1 Весы с погрешностью взвешивания не более ± 0,1 г.
- В.2.2 Сита номинальным диаметром 200 мм, соответствующие требованиям стандарта ИСО 565 [13], дополненные крышкой и приемным контейнером. Решетки сит должны быть изготовлены из проволочной сетки.

Решетки используемых сит имеют квадратные отверстия следующих размеров: 1; 2; 3,15; 4; 6,30; 8 и 12,5 мм.

В.2.3 Механизированный встряхиватель сита.

В.3 Порядок действий

- В.3.1 Проверяют сито или сита на отсутствие повреждений решетки и на отсутствие любой деформации формы отверстий решетки. Заменяют все дефектные решетки.
- В.3.2 Взвешивают сито или по отдельности каждое сито из набора сит с точностью до 0.1 г.
 - В.3.3 Взвешивают контейнер с точностью до 0,1 г.
- В.3.4 Следует смонтировать сито или сита в контейнер, одно поверх другого. Укладка сит в стопку служит для того, чтобы убедиться, что сита собраны в таком порядке по диаметру отверстий сетки, при котором наибольший диаметр отверстий сетки приходится на верхнее сито.
- В.3.5 Взвешивают для последующих испытаний (150 ± 0,1) г пробы грубоизмельченного вторичного поливинилхлорида.
 - В.3.6 Переносят пробу в непокрытое сито, избегая его переполнения.

FOCT P 57044—

(проект, первая редакция)

- В.3.7 Покрывают сито или набор сит крышкой и закрепляют их в механизированном встряхивателе для последующего просеивания.
 - В.3.8 Устанавливают таймер механизированного встряхивателя на 25 мин.
- В.3.9 После окончания периода встряхивания аккуратно вытаскивают сито или сита, начиная с верхнего, и взвешивают каждое сито и контейнер вместе с их содержимым.

В.4 Количество измерений размера частиц

Следует провести два измерения для каждой испытуемой пробы.

В.5 Измерение размера частиц и оформление результатов

В.5.1 Целью является вычисление средней массы (г) грубоизмельченного вторичного поливинилхлорида, оставшегося на сите с заданным размером отверстий, а также средней массы (г) грубоизмельченного вторичного поливинилхлорида, оставшегося в контейнере. Для каждого сита и для каждого контейнера вычисляют среднюю массу оставшегося грубоизмельченного вторичного поливинилхлорида (для двух определений) следующим образом:

$$m_1 - m_2 = m_3$$
 $m_4 - m_5 = m_6;$ (B.1)

$$(m_3 + m_6) / 2 = m_r$$
 (B.2)

где m_1 и m_4 – массы каждого из сит или контейнера с оставшимся на них грубоизмельченным вторичным поливинилхлоридом для первого и второго измерений размера частиц, г;

 m_2 и m_5 – массы каждого из сит или пустого контейнера, г;

 m_3 и m_6 – массы грубоизмельченного вторичного поливинилхлорида, оставшегося в каждом из сит или в контейнере, для первого и второго измерения размера частиц, г;

 m_{r} — средняя масса грубоизмельченного вторичного поливинилхлорида, оставшегося в каждом из сит или в контейнере, г.

В.5.2 Расчет долей (процентов) исследуемой пробы, оставшихся на каждом из сит или в контейнере, осуществляют по следующей формуле

$$R = 100 \ (m_r / m_s)$$
 (B.3)

где R – доля вторичных материалов, оставшаяся на сите или в контейнере, %;

 m_r – средняя масса крошки, оставшейся на каждом из сит или в контейнере, г;

 m_s – средняя масса двух взятых проб, г.

В.5.3 Расчет среднего размера частиц.

Рассчитывают по формуле (В.3) долю (в %) оставшейся пробы R для каждого вида сит и для контейнера. Сумма этих значений для стопки сит и контейнера должна составлять более 99 % пробы. Если это не подтверждается, то испытание должно быть повторено.

В.6 Протокол испытаний

Протокол испытаний должен содержать:

- ссылку на настоящий стандарт;
- все подробности, необходимые для полной идентификации партии вторичных поливинилхлоридов;
 - среднюю массу пробы в граммах;
- массу и массовую долю (%) испытуемого образца, оставшуюся на каждом из сит и в контейнере;
 - дату проведения испытаний.

Приложение Г

(обязательное)

Установление пригодности вторичных поливинилхлоридов к обработке каландрованием

Г.1 Общие сведения

Пригодность вторичных поливинилхлоридов к обработке каландрированием определяется путем изготовления из вторичных поливинилхлоридов с помощью двухвалковых вальцов тонкого листа с последующей визуальной проверкой его прочностных характеристик и внешнего вида. Условия должны быть выбраны таким образом, чтобы насколько возможно соответствовать условиям промышленного технологического процесса.

Г.2 Аппаратура

Двухвалковые вальцы с подогревом валков.

Г.3 Порядок действий

- Г.З.1 Помещают пробу вторичного поливинилхлорида между нагретыми валками со следующими параметрами:
- а) температура валков от 140 °C до 190 °C в зависимости от формулы соединения поливинилхлорида. Температуры валков для различных соединений приведены в таблице Г.1.

Таблица Г.1 – Температура валков в зависимости от формулы соединения

Соединение поливинилхлорида	Температура валков, °С
Высокопластифицированный вторичный поливинилхлорид	150
Пластифицированный вторичный поливинилхлорид	160
Низкопластифицированный вторичный поливинилхлорид	170
Непластифицированный вторичный поливинилхлорид	180

- б) линейная скорость: валок 1 10 м/мин; валок 2 -от 10 до 15 м/мин;
- в) коэффициент трения от 1,0 до 1,5;
- г) зазор между двумя валками от 0,2 до 1,5 мм.

Повторяют прохождение листа через валки до тех пор, пока плавление материала не будет завершено.

Г.3.2 Обеспечивают однородность расплавленного материала путем вырезания полос листа, пребывавших в контакте с быстрым валком, и их повторного размещения между двумя валками, чтобы получить соответствующий нормам (стандартный) образец.

ГОСТ Р 57044—

(проект, первая редакция)

Примечание – Если обеспечить однородность материала невозможно, то следует записать этот факт.

- Г.З.З Подготавливают каландрированный лист толщиной от 0,5 до 2 мм в заданные промежутки времени от 5 до 20 мин. Оценивают, насколько легко извлечь лист из валков, и записывают результат оценки. Проверяют визуально поверхность валков и записывают результат проверки.
- Г.З.4 Охлаждают лист перед проверкой внешнего вида его поверхности с помощью визуального осмотра. Записывают особенности поверхности (гладкая, шероховатая), отметив наличие нерасплавленных зерен, отверстий, волокон и т. д.
- Г.3.5 Для низкопластифицированного поливинилхлорида оценивают жесткость листа вручную и сравнивают ее с жесткостью эталонного листа.

Примечание — В случае возникновения проблем на этапах Г.3.2 — Г.3.5 следует испытать другой образец вторичных поливинилхлоридов.

Приложение Д

(обязательное)

Установление пригодности вторичных поливинилхлоридов к обработке экструзией

Д.1 Общие сведения

Настоящее приложение устанавливает метод испытания для оценки пригодности вторичных поливинилхлоридов для изготовления из них изделий путем экструдирования полосы с последующей визуальной проверкой ее внешнего вида и плотности.

Рекомендуется зафиксировать параметры обработки (противодавление, вращающий момент) для ориентировочной оценки долгосрочных характеристик.

Д.2 Аппаратура

Д.2.1 Экструдер.

Примечание – В зависимости от экономической целесообразности используют лабораторный или промышленный экструдер.

- Д.2.2 Весы с погрешностью взвешивания до 0,1 г.
- Д.2.3 Экструзионная головка с прямоугольным отверстием шириной от 10 до 20 мм и высотой от 1 до 4 мм.

При определении размера испытуемой полосы и соответственно экструзионной головки рекомендуется принимать во внимание указанные размеры для проведения дальнейших механических испытаний на прочность.

Д.3 Порядок действий

Контроль процесса экструзии следует проводить через регулярные промежутки времени с учетом международных стандартов обеспечения качества и в соответствии с другими документами и материалами, пригодными для этих целей.

- Д.3.1 Помещают пробу вторичного поливинилхлорида в экструдер при соблюдении следующих условий:
- постоянной температуры экструдера, близкой к температуре обработки конечного продукта;
 - постоянной скорости экструзии в зависимости от типа экструдера и винтов.
- Д.3.2 Продолжают экструзию и записывают изменения противодавления и/или вращающего момента. Когда противодавление и/или вращающий момент станет постоянным, начинают отбор проб. Необходимо быть уверенным в стабильности процесса, поскольку эти параметры не должны меняться в течение периода отбора проб.

- Д.3.3 Экструдируют полосу заданной длины, предпочтительно от 0,5 до 1,5 м. Оценивают простоту процесса обработки и записывают результаты оценки.
- Д.3.4 Охлаждают полосу перед проверкой внешнего вида ее поверхности с помощью визуального осмотра. Записывают особенности поверхности (гладкая, шероховатая), наличие нерасплавленных частиц, отверстий и т. д.

Примечание – В случае возникновения проблем на этапах Д.3.2-Д.3.4 испытывают другой образец вторичных поливинилхлоридов.

Приложение E (справочное)

Типичные составы композиций на основе поливинилхлорида

Е.1 Поливинилхлорид преобразуют в композиции, состав которых зависит от областей их использования. Типичные составы композиций на основе поливинилхлорида приведены в таблице Е.1.

E.2 Вторичные поливинилхлориды получают из отходов продукции, произведенной из композиций, представленных в таблице E.1.

Таблица E.1 – Типичные составы композиций на основе поливинилхлорида (в частях на 100 частей ПВХ-смолы)

Область использования	Поливинил-хло	Пластифи-ка	Различные	Другие	
Область использования	рид	тор	наполнители	добавки ¹⁾	
Жесткая упаковка	100	0	0	От 5 до 20	
Гибкая упаковка	100	От 20 до 40	0	От 1 до 20	
Полимерные составляющие	100	0	От 2 до 5	4	
напорных трубопроводов		J	о. – до с	'	
Полимерные составляющие	100	0	От 0 до 20	От 3 до 5	
безнапорных трубопроводов			от одо до	ССДСС	
Окна и двери	100	0	От 5 до 10	От 7 до 16	
Другие профили	100	0	От 0 до 40	От 5 до 15	
Кабели	100	От 30 до 60	От 0 до 50 ²⁾	От 3 до 10	
Половые покрытия	100	От 25 до 50	От 0 до 300	От 2 до 5	
Тонколистовые материалы	100	От 40 до 70	От 0 до 30	От 2 до 10	
Материалы с пленочным покрытием	100	От 40 до 90	От 0 до 30	От 7 до 20 ³⁾	

¹⁾ Стабилизаторы, модификаторы ударопрочности и др.

²⁾ Возможно до 250 частей на 100 частей полимера.

³⁾ Включая синтетическое текстильное волокно.

Приложение Ж (справочное)

Определение количества нерастворимых в тетрагидрофуране примесей

Ж.1 Общие сведения

Определение количества нерастворимых в тетрагидрофуране примесей во вторичном поливинилхлориде.

Ж.2 Аппаратура

- Ж.2.1 Весы с погрешностью взвешивания ± 0,01 г.
- Ж.2.2 Магнитная мешалка с количеством оборотов в минуту, регулируемых в пределах от 0 до 1200.
 - Ж.2.3 Треугольный стержень магнитной мешалки.
 - Ж.2.4 Вытяжной шкаф.
 - Ж.2.5 Лабораторный стакан.
 - Ж.2.6 Коническая колба Эрленмейера с вентилируемой крышкой.
 - Ж.2.7 Полиамидный фильтр с сеткой 125 микрон.
 - Ж.2.8 Пара перчаток.
 - Ж.2.9 Защитные очки.
 - Ж.2.10 Коническая металлическая опорная решетка для фильтра.
 - Ж.2.11 Промывочная пипетка.
 - Ж.2.12 Микроскоп.

Ж.3 Реагент

Тетрагидрофуран, растворитель.

Примечания

- 1 Тетрагидрофуран является одним из прекурсоров, оборот которых в Российской Федерации ограничен и в отношении которых устанавливаются меры контроля в соответствии с законодательством Российской Федерации и международными договорами Российской Федерации [14].
- 2 Для обеспечения безопасности важно, чтобы при применении растворителей к испытуемым пробам использовались средства индивидуальной защиты. Использование растворителей в связи с применением настоящего стандарта может дополнительно контролироваться в соответствии с национальным и/или региональным законодательством. В частности, отработанный тетрагидрофуран, являющийся прекурсором и подпадающий под строгий контроль в качестве наркотического вещества, следует собирать, хранить и направлять на рекуперацию.

FOCT P 57044—

(проект, первая редакция)

Ж.4 Порядок действий

Ж.4.1 Из пробы просеянного или дробленого вторичного поливинилхлорида отбирают образец для испытаний, представляющий собой (5 \pm 0,1) г вторичного поливинилхлорида с частицами, имеющими максимальный размер 6 мм. Записывают фактическую массу образца для испытаний $M_{\rm S}$.

Ж.4.2 Следует надеть перчатки и защитные очки.

Примечание – Внимание! Все операции следует проводить в вытяжном шкафу.

- Ж.4.3 Подготавливают 50 мл тетрагидрофурана (берут не менее трех проб), помещают его вместе с навеской в бюксы с крышкой и оставляют на 3-4 ч, периодически помешивая не реже двух раз в час.
- Ж.4.4 Для предотвращения образования комков медленно пересыпают один из испытуемых образцов в колбу Эрленмейера.
- Ж.4.5 Колба Эрленмейера должна закрываться только пробкой с воздухоотводной трубкой, чтобы пары тетрагидрофурана могли улетучиваться из колбы.
 - Ж.4.6 Взвешивают полиамидный фильтр с сеткой 125 микрон (M_E).
- Ж.4.7 После полного завершения растворения поливинилхлорида профильтровывают раствор через полиамидный фильтр 125 микрон, установленный на коническую металлическую поддерживающую сетку в верхней части контейнера (сосуда).
 - Ж.4.8 Промывают колбу Эрленмейера и мешалки над фильтром.
 - Ж.4.9 Промывают нерастворенный материал, оставшийся на фильтре.
- Ж.4.10 В естественных условиях высушивают фильтр с нерастворенным материалом, поместив его в вентилируемый вытяжной шкаф на 12 ч.
 - Ж.4.11 Через 12 ч взвешивают фильтр с нерастворенным материалом (M_T) .

Ж.5 Оформление результатов

Массу нерастворимого материала $M_{\scriptscriptstyle f}$ вычисляют как разницу между $M_{\scriptscriptstyle F}$ и $M_{\scriptscriptstyle T}$, выраженную в граммах, с округлением до 0,1 г.

Рассчитывают процентное содержание нерастворимого материала по формуле

$$M_I = 100(M_T - M_E) / M_S.$$
 (Ж.1)

Нерастворимый материал может быть проанализирован с помощью микроскопа в сравнении с образцами примесей.

Ж.6 Протокол испытаний

Протокол испытаний должен содержать:

- ссылку на настоящий стандарт;

- все подробности, необходимые для полной идентификации партии вторичного поливинилхлорида;
- фактическую массу испытуемого образца, начальную массу фильтра, массу фильтра с нерастворимым материалом, массу нерастворимого материала, в граммах;
 - процентное содержание нерастворимого материала;
 - тип нерастворимых примесей и посторонних веществ при необходимости;
 - дату проведения испытаний.

ГОСТ Р 57044—

(проект, первая редакция)

Библиография

[1]	EH 15346:2015	Полимеры.	Рециклированные	пластмассы.
		Характеристика	реци	ркулированных
	(EN 15346:2015)	поливинилхлорид	ОВ	
		(Plastics – Recy	/cled plastics – Cha	racterization of
		poly(vinyl chloride)	(PVC) recyclates)	
[2]	EH 15347:2008	Полимеры.	Рециклированные	пластмассы.
		Характеристика о	гходов пластмасс	
	(EN 15347:2008)	(Plastics – Recycle	ed Plastics – Characteris	ation of plastics
		wastes)		
[3]	ЕН ИСО 3451-5:2025	Полимеры. Опре	деление содержания	золы. Часть 5.
		Поливинилхлорид	ļ	
	(EN ISO 3451-5:2025)	(Plastics Determina	ation of ash Part 5: Poly(vinyl chloride))
[4]	ЕН ИСО 868:2003	Полимеры и эбон	ит. Определение инден	тометрической
		твердости с помо	щью дюрометра (тверд	дость по Шору)
	(EN ISO 868:2003)	(Plastics and eb	onite – Determination	of indentation
		hardness by mean	s of a durometer (Shore	hardness))
[5]	ЕН ИСО 6186:2023	Полимеры. Опред	еление текучести	
	(EN ISO 6186:2023)	(Plastics Determina	ation of pourability)	
[6]	ЕН ИСО 1183-1:2025	Полимеры. Метод	ы определения плотно	сти неячеистых
		полимеров. Част	ъ 1. Метод погруже	ния, метод с
		применением ж	идкостного пикномет	ра и метод
		титрования		
	(EN ISO 1183-1:2025)	(Plastics Method	s for determining th	ne density of
		non-cellular plasti	cs Part 1: Immersion	method, liquid
		pycnometer metho	d and titration method)	
[7]	ЕН ИСО 527-1:2019	Полимеры. Опре	деление механически	х свойств при
		растяжении. Част	ь 1. Общие принципы	
	(EN ISO 527-1:2019)	(Plastics - Deterr	nination of tensile prop	erties – Part 1:
		General principles)		

[8]	ЕН ИСО 527-2:2025	Полимеры. Определение механических свойств при
		растяжении. Часть 2. Условия испытаний для литьевых
		и экструзионных полимеров
		(Plastics Determination of tensile properties Part 2: Test
	(EN ISO 527-2:2025)	conditions for moulding and extrusion plastics)
[9]	EH ИСО 182-1:1990	Полимеры. Определение тенденции компаундов и
		продуктов на основе гомополимеров и сополимеров
		винилхлорида к выделению хлорида водорода и других
		кислотных продуктов при повышенных температурах.
		Часть 1. Метод с применением конго красного
	(EN ISO 182-1:1990)	(Plastics; determination of the tendency of compounds and
		products based on vinyl chloride homopolymers and
		copolymers to evolve hydrogen chloride and any other
		acidic products at elevated temperatures; part 1: Congo
		red method)
[10]	ЕН ИСО 182-2:1990	Полимеры. Определение тенденции компаундов и
		продуктов на основе гомополимеров и сополимеров
		винилхлорида к выделению хлорида водорода и других
		кислотных продуктов при повышенных температурах.
		Часть 2. Метод измерения рН
	(EN ISO 182-2:1990)	(Plastics; determination of the tendency of compounds and
		products based on vinyl chloride homopolymers and
		copolymers to evolve hydrogen chloride and any other
		acidic products at elevated temperatures; part 2: pH
		method)
[11]	ЕН ИСО 182-3:2023	Полимеры. Определение тенденции компаундов и
		продуктов на основе гомополимеров и сополимеров
		винилхлорида к выделению хлорида водорода и других
		кислотных продуктов при повышенных температурах.
		Часть 3. Кондуктометрический метод
	(EN ISO 182-3:2023)	(Plastics Determination of the tendency of compounds and
		products based on vinyl chloride homopolymers and
		copolymers to evolve hydrogen chloride and any other

ГОСТ Р 57044—

(проект, первая редакция)

		acidic	products	at	elevated	tempera	itures	Part	3:
		Conduct	tometric m	etho	d)				
[12] EH ИС	O 306:2022	Полиме	ры. Термс	пла	стичные м	иатериаль	ы. Опре	эделен	ие
		точки ра	азмягчени	я по	Вика				
(EN ISC	O 306:2022)	(Plastics	Thermop	lasti	c materia	ls Determ	ination	of Vid	cat
		softenin	g temperat	ure ((VST))				
[13] EH UC	O 565:1990	Сита	контро	ЛЬНЬ	ole.	Проволоч	ная	ткан	нь,
		перфор	ированны	е пл	астины	и листы,	изготс	вленн	ые
		гальван	ическим	мет	годом. I	Номиналь	ные	размер	ры
		отверст	ий						
(EN ISC	O 565:1990)	(Test sie	eves; meta	al wir	re cloth, p	perforated	metal	plate a	nd
		electrofo	ormed shee	et; no	ominal size	es of open	ings)		
	-		D.+	_	0045		- ^		

УДК 504.064:006.354

OKC 13.030.50

Ключевые слова: вторичные ресурсы, вторичное сырье, поливинилхлорид, характеристики поливинилхлоридов, утилизация отходов, экономика замкнутого цикла

Федеральное государственное автономное учреждение «Научно-исследовательский институт «Центр экологической промышленной политики» (ФГАУ «НИИ «ЦЭПП»)

Руководитель разработки:

Директор ФГАУ «НИИ «ЦЭПП»

Д.О. Скобелев

Ответственный секретарь ТК 231

О.С. Ежова