Build a Transcription Bot for Google
Meet using Recall.ai

You're building a notetaking app for Google Meet. You need transcripts that
capture who's speaking, what they're saying and when. Google Meet's captions
won't cut it, since they often miss details and lack speaker names. There are two
ways that work. One's messy and requires a team of five developers to maintain
forever. The other’s clean and requires a few API calls. Let's break it down.

Option 1: Build a Bot to Capture Captions

You can code a bot to join a Google Meet and automatically grab its captions. This
would be a good case for smaller use cases, but you will encounter challenges
when trying to scale the bot. Google often makes changes to its applications
which can break your code. Captions can incorrectly transcribe words with
accents or background noise. You'll possibly deal with browser logins, errors, and
Google's terms of service, which might lead to account restrictions. This bot is a
proof-of-concept, not a long-term solution.

Option 2: Use Recall.ai for Transcriptions

Now for the cleaner way. You can use Recall.ai's API to send a bot to your Google
Meet calls and pull transcriptions. It will capture who's speaking, what they're
saying, and the exact timestamp. You can set this up with a few API calls. No need

for a custom bot, saving you the maintenance headaches.

We made a demo app to show you how to use Recall.ai's APl to deploy a bot, join a
Google Meet, and get real-time transcriptions.

Let's walk through the steps to get it running.

Creating the Recall.ai Transcription Bot Project

Sign up at Recall.ai and create an API key

Once you are in.

http://recall.ai/?utm_source=blog

1. Select API Keys.
2. Create a New API Key.

ERET—

APl Keys

D Read the Docs

Set up a project with a frontend and backend folder

mkdir recall-bot-demo
cd recall-bot-demo
mkdir frontend

mkdir backend

Let's build the frontend using React

cd frontend

npx create-react-app .
npm install socket.io-client axios

Below is a basic React App.js component to do the following

e Allow users to input a Google Meet URL and deploy the bot.
e Display real-time transcripts with speaker labels and timestamps.

Copy the code below and paste it into your frontend/App.js file

React, { useState, useEffect } 'react’;
axios 'axios';

io 'socket.io-client’;

"./App.css';

socket = io('http://localhost:3001");

App() {
[meetingUrl, setMeetingUrl] = useState("");
[transcripts, setTranscripts] = useState([]);
[status, setStatus] = useState('');

useEffect(() = {
socket.on('transcript', (transcript) = {
setTranscripts((prev) = [...prev, transcript]);
1;
() = socket.off('transcript');
hAD;

handleDeployBot =)= {
(!meetingUrl) {
setStatus('Please enter a valid Google Meet URL');
}
setStatus('Deploying bot...");
{

response = axios.post('http://localhost:3001/deploy-bot’, {
meeting_url: meetingUrl,
N
setStatus('Bot deployed with ID: ${response.data.bot_id}");
(error) {
setStatus('Error deploying bot');
console.error(error);

IlAppll
Recall.ai Google Meet Transcription Demo

ntextu

"Enter Google Meet URL"
{meetingUrl}
{(e) = setMeetingUrl(e.target.value)}

{handleDeployBot}>Deploy Bot

{status}
Live Transcript
"transcript-container"
{transcripts.map((t, index) = (
{index} "transcript"
[{t.timestamp.toFixed(2)}s] {t.speaker}:
{t.text}

e
}
export default App;

Let's build the backend

cd ../backend

touch index.js
npm init -y

npm init -y creates package.json

Install dependencies

npm install express axios dotenv socket.io

express: For creating the server.

axios: For making API requests to Recall.ai.

dotenv: For managing environment variables.

socket.io: For real-time communication with the frontend.

Set up the backend environment variables (.env)

e Create a .env file in /backend

echo -e "RECALL_API_KEY=YOUR_TOKEN_HERE\nWEBHOOK_URL=NGROK_URL\nPORT=BACKEND_PORT" > .env

e Your backend/.env file should look like this:

RECALL_API_KEY=YOUR_TOKEN_HERE
WEBHOOK_URL=NGROK_URL

PORT=BACKEND_PORT

e Replace YOUR_TOKEN_HERE with your actual Recall.ai API key
e Replace NGROK_URL with your ngrok server URL (e.qg.,

https://1234-56-789-01-234.ngrok-free.app - more below)
e Replace BACKEND_PORT (e.g,. 3001 - more below)

Create the server (backend/index.js)

Below is a basic server setup to do the following

e Handle a POST request to send a bot to a Google Meet call.
e Receive webhooks from Recall.ai with transcription data.
e Broadcast transcripts to the frontend via Socket.|O.

Copy the code below and paste it into your backend/index.js file

require("dotenv").config();

https://1234-56-789-01-234.ngrok-free.app

express = require("express");
axios = require("axios");
{ Server } = require("socket.io");

cors = require("cors");
app = express();
server = require("http").createServer(app);
io = Server(server, {
cors: { origin: "http://localhost:3000" },
1

app.use(express.json());
app.use(cors());

recall = axios.create({
baseURL: "https://us-west-2.recall.ai/api/v1",
headers: {
Authorization: "Token ${process.env.RECALL_API_KEY},
"Content-Type": "application/json",
3
i

app.post("/deploy-bot", (req, res) = {
{ meeting_url } = req.body;
('meeting_url) {
res.status(400).json({ error: "Meeting URL is required" });

response = recall.post("/bot", {
meeting_url,
bot_name: "Bot",
recording_config: {
transcript: { provider: { meeting_captions: {} } },
realtime_endpoints: [
{
type: "webhook",
url: "${process.env.WEBHOOK_URL}/webhook/transcription’,
events: ["transcript.data"],

b,
;i
res.json({ bot_id: response.data.id });
} (error) {
res.status(500).json({ error: "Failed to deploy bot" });
}
i

app.post("/webhook/transcription", (req, res) = {
transcriptData = req.body.data?.data || {};
(transcriptData.words || IArray.isArray(transcriptData.words)) {
res.status(200).json({});

transcript = {
speaker: transcriptData.participant?.name || "Unknown",
text: transcriptData.words.map((w) = w.text).join(" "),
timestamp: transcriptData.words[0].start_timestamp?.relative || O,
b
io.emit("transcript", transcript);
res.status(200).json({});
D;

server.listen(process.env.PORT || 3001, () = {
console.log("Server running on port 3001");

1;

Sign up to get a ngrok account

e Go to ngrok and create an account
e [nstall ngrok following the instructions

https://dashboard.ngrok.com/signup
https://dashboard.ngrok.com/get-started/setup

ngrok

Signup

' Connect

Configure narok to expose the backend

cd backend

ngrok http 3001

Your ngrok session should look like this

Session Status online

https://ngrok.com/

Account Your Name (Plan: Free)
Version 3.22.1
Region United States (State) (us-state-1)

Latency 22ms
Web Interface http:
Forwarding https:

e Replace NGROK_URL with your ngrok server URL
https://1234-56-789-01-234.ngrok-free.app

WEBHOOK_URL=https:

Create a webhook in Recall.aj

Once you arein.

1. Select Webhooks.
2. Add a new endpoint.

This will be used to listen for transcript events.

[~

Webhooks

EcentCatalog Logs Activity

Endpanis
—_— [
Engpons e rapom

https://1234-56-789-01-234.ngrok-free.app
https://us-west-2.recall.ai/dashboard/webhooks
https://docs.recall.ai/docs/bot-status-change-events

1. Use your WEBHOOK_URL to create the Webhook Endpoint URL (e.g.,

https://1234-56-789-01-234.nqrok-free.a

2. Click on Create.

Plattorm
@ APl Explorer
& Bots
& Calendars
© Zoom OAuth
Slack Teams
® Googe Logins

Logs

& Webhooks

Setup & Intagrations
@ Meeting Bot Setup
& Calendar Integration

BB Transcription

Account
£ APIKeys
A Team

 Biling

[Read the Docs

D Talk to Sales

Platform
@ API Explorer
& Bots
 Calendars
© Zoom OAuth
4 Slack Teams
® Google Logins
= Logs

& Webhooks

Setup & Integrations
® Meeting Bot Setup
& Calendar Integration
BB Transcription
Account

£ APIKeys

A Team

S Biling

0 Read the Docs

D Tak to Sales

[Home > Webhooks

[i]

Webhooks

Configure webhook endpoints and subscribe to events.

Endpoints EventCatalog Logs Activity

Endpoints > New Endpoint

ngrok-fi
with Svix Play
Description
An optional description of what this endpoint s used for
Subscribe to events

Search events,

Bot Status Change Webhooks &

Home > Webhooks

Webhooks

Calendar V2 Webhooks ¢

Configure webhook endpoints and subscribe to events.

Endpoints Event Cat

Event Catalog >

How to filter webhooks to specific bots ¢

talog Logs Activity

Endpoints »
I https://12: 34.ngrok-fi I Ear CreationDate
April 8, 2025 at 314 PM
Overview Testng Advanced
Last Updated
Description e April 18, 2025 a1 314 PM
No description Subscribed events Edt
Listening toal events
Attempt Delivery Stats s
. .o
S RECEIVED IN THE LAST 28 DAYS
Message Attempts ~ 5 Al Succeeded Failed
evenr Tyve

Showing 0 items

Bot Status Change Webhooks &

Calendar V2 Webhooks &

MESSAGE ID TIMESTAMP

This endgointhas ot received any messages yet

How o fiiter webhooks to specific bots &

webhook/transcription).

Filters

https://1234-56-789-01-234.ngrok-free.app/webhook/transcription

By now, your backend/.env file should have the RECALL_API_KEY,
WEBHOOK_URL, and PORT values like this example:

RECALL_API_KEY=YOUR_API_KEY

WEBHOOK_URL=https:
PORT=3001

Launch the backend

cd backend
node index.js

Launch the frontend

cd ../frontend
npm start
Ensure ngrok is running

Deploying Recall.ai’s transcription bot

Start a Gooale Meet, stay in the meeting, and copy its URL

Go to your local React server (e.g., http://localhost:3000)

Enter a Google Meet URL (e.g., https://meet.google.com/abc-defg-hij)
Click the "Deploy Bot"” button

Let the bot into the Google Meet when it shows up

Talk for a little bit (make sure to turn on your microphone)

Watch live transcripts roll live in the app

NoU~®wN S

Conclusion

And that's a wrap! You've just built a transcription bot for Google Meet using
Recall.ai that grabs real-time transcripts with speaker tags and timestamps. It's
fast, reliable, and simple to use. Now your users can focus on the meeting, not
note-taking.

You can find the full code of this tutorial on Github where you just need to insert

your own Recall.ai APl key and other environment variables.

http://meet.new
http://localhost:3000
https://meet.google.com/abc-defg-hij
http://recall.ai
https://github.com/rchrdchn/recall-transcription-demo

If you enjoyed the tutorial, you can learn more in the Recall.ai blog.

Until next time, and happy coding!

Richard Chan is a Content Engineer @ Recall.ai, building tools to make work
easier.

More Resources

GitHub Demo Repository
Walkthrough Video

Recall.ai Blog
Recall.ai Documentation
Recall.ai YouTube

https://www.recall.ai/blog
https://middlekid.io/
http://recall.ai
https://github.com/rchrdchn/recall-transcription-demo
https://www.loom.com/share/85eaab3a06e34665832e42769974fdfa?sid=4ac404a4-8932-4bf1-9a2d-81d7475e393d
https://www.recall.ai/blog
https://docs.recall.ai/
https://www.youtube.com/@recallai

	Build a Transcription Bot for Google Meet using Recall.ai
	Creating the Recall.ai Transcription Bot Project
	Sign up at Recall.ai and create an API key
	Set up a project with a frontend and backend folder
	
	Let’s build the frontend using React
	Below is a basic React App.js component to do the following
	Let’s build the backend
	
	Set up the backend environment variables (.env)
	
	Create the server (backend/index.js)
	Below is a basic server setup to do the following
	Sign up to get a ngrok account
	
	Configure ngrok to expose the backend
	
	Create a webhook in Recall.ai
	By now, your backend/.env file should have the RECALL_API_KEY, WEBHOOK_URL, and PORT values like this example:
	Launch the backend
	Launch the frontend
	Ensure ngrok is running

	Deploying Recall.ai’s transcription bot
	Conclusion
	More Resources

