Formulas for Conic Sections

Circle

For circle with radius *r* :

Center
$$(h, k)$$
:
 $(x - h)^2 + (y - k)^2 = r^2$
Center $(0, 0)$: $x^2 + y^2 = r^2$

Eccentricity: e = 0

Vertex (h, k)

Parabola

For parabola with vertical axis and directrix y = k - p, where p is a nonzero real number:

Vertex
$$(h, k)$$
:
 $(x - h)^2 = 4p(y - k)$

Vertex (0, 0): $x^2 = 4py$

For parabola with horizontal axis and directrix x = h - p, where p is a nonzero real number:

Vertex
$$(h, k)$$
:
 $(y - k)^2 = 4p(x - h)$

Vertex (0, 0): $y^2 = 4px$

Eccentricity: e = 1

Ellipse

For ellipse with horizontal major axis, where a > b > 0:

Center (h, k):

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

Center (0, 0):
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} = 1$$

Center (0, 0):
$$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1$$

Eccentricity:
$$0 < e < 1$$
, $e = \frac{c}{a}$,
where $c^2 = a^2 - b^2$

Hyperbola

For hyperbola with horizontal transverse axis, where a > 0, b > 0:

Center (h, k):

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

Center (0, 0):
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Foci $(h \pm c, k)$,
where $c^2 = a^2 + b^2$

For hyperbola with a vertical transverse axis, where a > 0, b > 0:

Center (h, k):

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

Center (0, 0):
$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

Foci: $(h, k \pm c)$,

Eccentricity: *e* > 1,

$$e = \frac{c}{a}$$
, where $c^2 = a^2 + b^2$

How are conic sections created?

A conic section is a curve formed by intersecting a right, circular cone with a plane without going through the vertex.

CIRCLE

A circle is formed when the plane is parallel to the base of the cone.

ELLIPSE

An ellipse is formed when the plane is at a slight angle with respect to the base of the cone, but not parallel to its slant edge.

PARABOLA

A parabola is formed when the plane is parallel to the slant edge of the cone and intersects its base.

HYPERBOLA

A hyperbola is formed when the plane intersects both cones.