Riad KHARROUBI

I. Montrer que pour $n \in N^*$

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = 1 - \frac{1}{n+1}$$

- **II.** Pour une application $f: A \rightarrow B$, donner la définition avec les quantificateurs l'injectivité, de la surjectivité et de la bijectivité de f.
- **III.** On considère la fonction *f* définie par

$$f: \left[-\frac{1}{2}; +\infty\right] \longrightarrow \left[-\frac{1}{4}; +\infty\right] x \mapsto x^2 + x$$

Montrer que la fonction f est bijective et déterminer sa bijection réciproque.

Alexandre QUINTANA VOROBEY

I. Calculer pour $n \in N$

$$\sum_{k=0}^{n} k(n k)$$

- II. Si E est un ensemble et A et B sont des parties de E, définir à l'aide de la notation $\{x \in ... | ...\}$ les parties $A \cup B$, $A \cap B$, $A \setminus B$ et \overline{A} .
- **III.** Soit f l'application de R^2 dans R^2 définie par

$$\forall (a,b) \in R^2, f(a;b) = (a+b;a-b)$$

Montrer que *f* bijective et déterminer sa bijection réciproque.

Valentin VERMOREL

I. Calculer pour $n \in N$

$$\sum_{k=0}^{n} \left(\frac{2^k}{3^{k+1}} \right)$$

- **II.** Donner les formules permettant de calculer les sommes de référence, sans oublier le cas des suites géométriques et arithmétiques.
- **III.** Soient deux applications $f: E \longrightarrow F$ et $g: F \longrightarrow G$
- **1.** Montrer que si $g \circ f$ est injective, alors f est injective.
- **2.** Montrer que si $g \circ f$ est surjective, alors g est surjective.

Riad KHARROUBI

I. Montrer que pour $n \in N^{\hat{}}$

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = 1 - \frac{1}{n+1}$$

- **II.** Pour une application $f: A \rightarrow B$, donner la définition avec les quantificateurs l'injectivité, de la surjectivité et de la bijectivité de f.
- **III.** On considère la fonction *f* définie par

$$f: \left[-\frac{1}{2}; +\infty\right] \rightarrow \left[-\frac{1}{4}; +\infty\right] x \mapsto x^2 + x$$

Montrer que la fonction f est bijective et déterminer sa bijection réciproque.

Alexandre QUINTANA VOROBEY

I. Calculer pour $n \in N$

$$\sum_{k=0}^{n} k(n k)$$

- II. Si E est un ensemble et A et B sont des parties de E, définir à l'aide de la notation $\{x \in ... | ...\}$ les parties $A \cup B$, $A \cap B$, $A \setminus B$ et \overline{A} .
- **III.** Soit f l'application de R^2 dans R^2 définie par

$$\forall (a,b) \in R^2, f(a;b) = (a+b;a-b)$$

Montrer que *f* bijective et déterminer sa bijection réciproque.

Valentin VERMOREL

I. Calculer pour $n \in N$

$$\sum_{k=0}^{n} \left(\frac{2^k}{3^{k+1}} \right)$$

- **II.** Donner les formules permettant de calculer les sommes de référence, sans oublier le cas des suites géométriques et arithmétiques.
- **III.** Soient deux applications $f: E \rightarrow F$ et $g: F \rightarrow G$
- **1.** Montrer que si $g \circ f$ est injective, alors f est injective.
- **2.** Montrer que si $g \circ f$ est surjective, alors g est surjective.

Riad KHARROUBI

I. Montrer que pour $n \in N$

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = 1 - \frac{1}{n+1}$$

Soit $n \in N^*$,

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1} \right) = 1 - \frac{1}{n+1}$$

II. Pour une application $f: A \rightarrow B$, donner la définition avec les quantificateurs l'injectivité, de la surjectivité et de la bijectivité de f.

III. On considère la fonction f définie par

$$f: \left[-\frac{1}{2}; + \infty\right] \rightarrow \left[-\frac{1}{4}; + \infty\right] x \mapsto x^2 + x$$

Montrer que la fonction f est bijective et déterminer sa bijection réciproque. Montrons que la fonction f est bijective.

Injectivité

Soient $x, y \in [-\frac{1}{2}; +\infty[$

$$f(x) = f(y) \Leftrightarrow x^2 + x = y^2 + y \Leftrightarrow x^2 - y^2 + x - y = 0 \Leftrightarrow (x - y)(x + y) + x$$

Donc *f* est injective

Surjectivité

Soit $c \in [-\frac{1}{4}; + \infty[$

$$f(x) = c \Leftrightarrow x^2 + x = c \Leftrightarrow x^2 + x - c = 0$$

Cette équation admet au moins une solution réelle si

$$\Delta = 1 + 4c \ge 0$$

Or,

$$c \ge -\frac{1}{4} \Leftrightarrow 4c \ge -1 \Leftrightarrow 1+4c \ge 0$$

Ainsi

$$x = -\frac{1}{2} + \frac{\sqrt{\Delta}}{2} \in \left[-\frac{1}{2}; + \infty \right[$$

est bien un antécédent de c par f. On en déduit que f est surjective et donc bijective.

Soit
$$x \in [-\frac{1}{2}; + \infty[$$
,

$$f(x) = y \Leftrightarrow x^2 + x = y \Leftrightarrow \left(x + \frac{1}{2}\right)^2 - \frac{1}{4} = y \Leftrightarrow \left(x + \frac{1}{2}\right)^2 = y + \frac{1}{4} (1)$$

En remarquant que, par hypothèse,

$$x + \frac{1}{2} \ge 0$$

$$(1) \Leftrightarrow x + \frac{1}{2} = \sqrt{y + \frac{1}{4}} \Leftrightarrow x = -\frac{1}{2} + \sqrt{y + \frac{1}{4}}$$

On en déduit que

$$\forall x \in [-\frac{1}{4}; + \infty[, f^{-1}(x)] = -\frac{1}{2} + \sqrt{x + \frac{1}{4}}]$$

Remarque

Pour montrer que la fonction f est bijective, on peut aussi remarquer que la fonction f est strictement croissante sur $\left[-\frac{1}{2}; +\infty\right]$ et

$$f\left(-\frac{1}{2}\right) = -\frac{1}{4}$$
$$f(x) = + \infty$$

Alexandre QUINTANA VOROBEY

I. Calculer pour $n \in N$

$$\sum_{k=0}^{n} k(n k)$$

Soit $n \in N$,

$$\sum_{k=0}^{n} k(n k) = \sum_{k=1}^{n} k \times \frac{n!}{k!(n-k)!} = n \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-1-(k-1))!} = n \sum_{k=1}^{n} (n-1 k-1) = n \sum_{k=0}^{n-1} (n-1 k-1) = n \sum_{k=0}^{n-$$

II. Si E est un ensemble et A et B sont des parties de E, définir à l'aide de la notation $\{x \in ... | ...\}$ les parties $A \cup B$, $A \cap B$, $A \setminus B$ et \overline{A} .

III. Soit f l'application de R^2 dans R^2 définie par

$$\forall (a,b) \in R^2, f(a;b) = (a+b;a-b)$$

Montrer que f bijective et déterminer sa bijection réciproque.

Montrons que la fonction f est bijective.

Injectivité

Soient $a, b, a, b' \in R$,

$$f(a;b) = f(a;b) \Leftrightarrow (a+b;a-b) = (a+b;a-b) \Leftrightarrow (a+b=a+b,a-b)$$

Donc f est injective

Surjectivité

Soient x, y, a, $b \in R$,

$$f(a;b) = (x;y) \Leftrightarrow \{a+b=x\ a-b=y \Leftrightarrow \{2b=x-y\ 2a=x+y \Leftrightarrow \{b=\frac{x+y}{2a}\}\}$$

Donc $\left(\frac{x+y}{2}; \frac{x-y}{2}\right)$ est un antécédent de (x; y) par f donc f est surjective et donc bijective et

$$\forall (x; y) \in \mathbb{R}^2, f^{-1}(x; y) = \left(\frac{x+y}{2}; \frac{x-y}{2}\right)$$

Remarque

Du fait de l'unicité de l'antécédent trouvé, la démonstration de la surjectivité était en fait celle de la bijectivité.

Valentin VERMOREL

I. Calculer pour $n \in N$

$$\sum_{k=0}^{n} \left(\frac{2^k}{3^{k+1}} \right)$$

Soit $n \in N$,

$$\sum_{k=0}^{n} \left(\frac{2^{k}}{3^{k+1}} \right) = \frac{1}{3} \sum_{k=0}^{n} \left(\frac{2}{3} \right)^{k} = \frac{1}{3} \times \frac{1 - \left(\frac{2}{3} \right)^{n+1}}{1 - \frac{2}{3}} = 1 - \left(\frac{2}{3} \right)^{n+1}$$

- **II.** Donner les formules permettant de calculer les sommes de référence, sans oublier le cas des suites géométriques et arithmétiques.
- **III.** Soient deux applications $f: E \longrightarrow F$ et $g: F \longrightarrow G$
- **1.** Montrer que si $g \circ f$ est injective, alors f est injective.

Supposons que $g \circ f$ est injective. Soient $x, y \in E$,

$$f(x) = f(y) \Longrightarrow g \circ f(x) = g \circ f(y) \Longrightarrow x = y$$

Donc f est injective.

2. Montrer que si $g \circ f$ est surjective, alors g est surjective.

Supposons que $g \circ f$ est surjective. Soit $y \in G$, il existe $x \in E$ tel que

$$g \circ f(x) = g(f(x)) = y$$

Or, $f(x) \in F$ est un antécédent de y par g donc g est surjective.