
Collective in Ray

Motivation​ 2

Status​ 2
Collectives Support Matrix​ 2
Supported Tensor Types​ 3

Importing and Code References​ 3

APIs​ 3
Initialization​ 4

Example Code​ 5
Basic APIs​ 6
Collective Functions​ 7

Imperative collective APIs​ 7
[WIP] Declarative Collective APIs​ 8

Example Code​ 10
Point-to-point Communication Functions​ 11

Example Code​ 12
Single-GPU and Multi-GPU Collective and P2P Functions​ 13

Example Code​ 15

Microbenchmarks​ 17
NCCL Microbenchmarks​ 17
GLOO Microbenchmarks​ 17

Real Use case: Scaling Up Spacy Pipeline​ 17
Case Description​ 17
Solution​ 18
Implementation Details​ 19
Results​ 19

Summary of Results​ 21

1

Motivation
See this RFC for a full description of why we need collectives in Ray.

Status

Collectives Support Matrix
See below the support matrix for collective calls with different backends. NCCL-based collective
are in place (merged to Ray master) whereas GLOO support is mostly working in progress.

●​ ✘: do not have plan to support them.
●​ WIP: in implementation, or to be merged
●​ ✓: in Ray master

Backend GLOO NCCL

Device CPU GPU CPU GPU

send ✓ ✘ ✘ ✓

recv ✓ ✘ ✘ ✓

broadcast ✓ ✘ ✘ ✓

all_reduce ✓ ✘ ✘ ✓

reduce ✓ ✘ ✘ ✓

all_gather ✓ ✘ ✘ ✓

2

https://github.com/zhisbug/ray/blob/rfc-collective-in-ray/doc/community/rfc-20201119-collective-in-ray/20201119-collective-in-ray.md
https://github.com/facebookincubator/gloo
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/overview.html

gather WIP ✘ ✘ ✘

scatter WIP ✘ ✘ ✘

reduce_scatter ✓ ✘ ✘ ✓

all_to_all ✘ ✘ ✘ WIP

barrier ✓ ✘ ✘ ✓

Supported Tensor Types
-​ torch.Tensor

-​ numpy.ndarray

-​ cupy.ndarray

Importing and Code References
To use these APIs, users are expected to import the collective package in their actor/task or
driver code via:

import ray.util.collective as col

Code references:

●​ python/ray/util/collective/collective.py
●​ python/ray/util/collective/types.py
●​ python/ray/util/collective/collective_group/basic_collective_group.py
●​ python/ray/util/collective/collective_group/nccl_collective_group.py
●​ python/ray/util/collective/examples

APIs
This section describes the user APIs of the collective functions under ray.util.collective.

3

https://github.com/ray-project/ray/blob/master/python/ray/util/collective/collective.py
https://github.com/ray-project/ray/blob/master/python/ray/util/collective/types.py
https://github.com/ray-project/ray/blob/master/python/ray/util/collective/collective_group/base_collective_group.py
https://github.com/ray-project/ray/blob/master/python/ray/util/collective/collective_group/nccl_collective_group.py
https://github.com/ray-project/ray/tree/master/python/ray/util/collective/examples

Initialization
Collective functions operate on collective groups. A collective group contains a number of
processes (in Ray, Ray-managed actors or tasks) that will enter the collective function calls.
Before making collective calls, we expect users to declare a set of actors/tasks, statically, as a
collective group. We currently provide three APIs for collective group initialization.

def init_collective_group(world_size: int,​
 rank: int,​
 backend=types.Backend.NCCL,​
 group_name: str = "default"):​
 """Initialize a collective group inside an actor/task process.​
​
 Args:​
 world_size (int): the total number of processes in the group.​
 rank (int): the rank of the current process.​
 backend: the CCL backend to use, NCCL or GLOO.​
 group_name (str): the name of the collective group.​
​
 Returns:​
 None​
 """

This above API is supposed to be called inside an actor/task code. Every actor/task that enters
the collective call shall make the above call at least once in order to rendezvous with each other.

Alternatively, we provide a declarative API that enables declaring collective groups in driver
programs (i.e., out of the collective process).

def declare_collective_group(actors,​
 world_size: int,​
 ranks: List[int],​
 backend=types.Backend.NCCL,​
 group_name: str = "default"):​
 """Declare a list of actors as a collective group.​
​
 Note: This function should be called in a driver process.​
​
 Args:​
 actors (list): a list of actors to be set in a collective group.​
 world_size (int): the total number of processes in the group.​
 ranks (List[int]): the rank of each actor.​

4

 backend: the CCL backend to use, NCCL or GLOO.​
 group_name (str): the name of the collective group.​
​
 Returns:​
 None​
 """

Note that for the same set of actors/task processes, multiple collective groups can be
constructed, with group_name (str) as their unique identifier. This enables to specify complex
communication patterns between different (sub)set of processes.

Example Code

@ray.remote(num_gpus=1)​
class Worker:​
 def __init__(self):​
 self.send = cp.ones((4,), dtype=cp.float32)​
 self.recv = cp.zeros((4,), dtype=cp.float32)​
​
 def setup(self, world_size, rank):​
 collective.init_collective_group(world_size, rank, "nccl", "default")​
 return True​
​
 def compute(self):​
 collective.allreduce(self.send, "default")​
 return self.send​
​
 def destroy(self):​
 collective.destroy_group()​
​
imperative​
num_workers = 2​
workers = []​
init_rets = []​
for i in range(num_workers):​
 w = Worker.remote()​
 workers.append(w)​
 init_rets.append(w.setup.remote(num_workers, i))​
_ = ray.get(init_rets)​
results = ray.get([w.compute.remote() for w in workers])​
​
​
declarative​

5

for i in range(num_workers):​
 w = Worker.remote()​
 workers.append(w)​
_options = {​
 "group_name": "177",​
 "world_size": 2,​
 "ranks": [0, 1],​
 "backend": "nccl"​
}​
collective.declare_collective_group(workers, **_options)​
results = ray.get([w.compute.remote() for w in workers])

Basic APIs
A set of basic APIs to query backend availability, group existence, group world size, or process
ranks, or destroy groups, are provided. See below their signatures.

def nccl_available():​
 """Check if nccl backend is available."""​
​
def gloo_available():​
 """Check if gloo backend is available."""​
​
​
def is_group_initialized(group_name):​
 """Check if the group is initialized in this process by the group name."""​
​
​
def destroy_collective_group(group_name: str = "default") -> None:​
 """Destroy a collective group given its group name."""​
​
​
def get_rank(group_name: str = "default") -> int:​
 """Return the rank of this process in the given group.​
​
 Args:​
 group_name (str): the name of the group to query​
​
 Returns:​
 the rank of this process in the named group,​
 -1 if the group does not exist or the process does​

6

 not belong to the group.​
 """​
​
def get_world_size(group_name: str = "default") -> int:​
 """Return the size of the collective group with the given name.​
​
 Args:​
 group_name: the name of the group to query​
​
 Returns:​
 The world size of the collective group, -1 if the group does​
 not exist or the process does not belong to the group.​
 """

Collective Functions

Check the matrix for the current status of supported collective calls and backend.

We currently provide two classes of APIs to make collective calls: imperative collective APIs,
and declarative collective APIs.

Imperative collective APIs
Below are some example signatures of the collective functions:

def allreduce(tensor, group_name: str = "default", op=types.ReduceOp.SUM):​
 """Collective allreduce the tensor across the group.​
​
 Args:​
 tensor: the tensor to be all-reduced on this process.​
 group_name (str): the collective group name to perform allreduce.​
 op: the reduce operation.​
​
 Returns:​
 None​
 """​
​
def broadcast(tensor, src_rank: int = 0, group_name: str = "default"):​
 """Broadcast the tensor from a source process to all others.​

7

​
 Args:​
 tensor: the tensor to be broadcasted (src) or received (dst).​
 src_rank (int): the rank of the source process.​
 group_name (str): the collective group name to perform broadcast.​
​
 Returns:​
 None​
 """​
​
​
def allgather(tensor_list: list, tensor, group_name: str = "default"):​
 """Allgather tensors from each process of the group into a list.​
​
 Args:​
 tensor_list (list): the results, stored as a list of tensors.​
 tensor: the tensor (to be gathered) in the current process​
 group_name (str): the name of the collective group.​
​
 Returns:​
 None​
 """

The imperative APIs exhibit the following behaviours:

●​ All the collective APIs are synchronous blocking calls。
●​ Since each API only specifies a part of the collective communication, the API is expected

to be called by each participating process of the (pre-declared) collective group. Upon all
the processes have made the call and rendezvous with each other, the collective
communication happens and proceeds.

●​ The APIs are imperative --- they need to be used inside the collective process
(actor/task) code.

[WIP] Declarative Collective APIs
There is an ongoing effort on developing a set of declarative collective APIs, in addition to the
imperative one. See the RFC-202012-ObjectRef-compatible-collectives for a full description of
the motivation and design.

Below are some example signatures of the declarative collective APIs. Note that these APIs
are under development, have not been merged into Ray master, and are still subject to
changes.

8

https://github.com/zhisbug/RFC/blob/rfc-objectref-collective/RFC-202012-objectref-compatible-collectives/rfc.md

def allreduce_refs(tensor_refs: list,​
 group_name: str = "default",​
 op=types.ReduceOp.SUM):​
 """Collective allreduce the tensors across the group.​
​
 This APIs takes a list of ObjectRefs as input instead of the tensors.​
​
 Args:​
 tensor_refs: the ObjectRefs to the list of tensors; Each ref

corresponds to a tensor on a collective participant process.​
 group_name (str): the collective group name to perform allreduce.​
 op: The reduce operation.​
​
 Returns:​
 None​
 """​
​
def reduce_refs(tensor_refs,​
 dst_rank: int = 0,​
 group_name: str = "default",​
 op=types.ReduceOp.SUM):​
 """Reduce the tensors across the group to the destination rank.​
​
 Args:​
 tensor_refs: the ObjectRefs to the list of tensors; each ref

corresponds to a tensor on a collective participant process.​
 dst_rank (int): the rank of the destination process.​
 group_name (str): the collective group name to perform reduce.​
 op: The reduce operation.​
​
 Returns:​
 None​
 """​
​
​
def allgather_refs(tensor_list_refs: list,​
 tensor_refs,​
 group_name : str = "default"):​
 """Allgather tensors from each process of the group into a list.​
​
 Args:​
 tensor_list_refs (list): a list of ObjectRefs, each ObjectRef refers

9

to a list of tensors​
 on a collective process.​
 tensor_refs (list): a list of ObjectRefs, each ObjectRef refers to a

tensor on a collective​
 process.​
 group_name (str): the name of the collective group.​
​
 Returns:​
 None​
 """

The declarative collective APIs exhibits the following behaviors and patterns:

●​ Different from the imperative ones, the declarative collective APIs specify the entire
collective communication via a single API call, by passing ObjectRefs of tensors owned
by all other participating processes. These collective-compatible ObjectRefs are realized
by a simplified Python Object Store (POS, see
RFC-202012-ObjectRef-compatible-collectives for details), with limited functionality
compared to a normal Ray ObjectRef.

●​ Hence, the declarative API is supposed to be called in a driver program, instead of inside
the actor/task code.

Example Code

@ray.remote​
class Worker:​
 def __init__(self):​
 self.buffer = cupy.ones((10,), dtype=cupy.float32)​
​ ​
 def get_buffer(self)​
 Return self.buffer

Create two actors and create a collective group​
A = Worker.remote()​
B = Worker.remote()​
col.declare_collective_group([A, B], options={rank=[0, 1], ...})​
​
Specify a collective allreduce "completely" instead of "partially" on

each actor​
col.allreduce_refs([A.get_buffer.remote(), B.get_buffer.remote()])

10

https://github.com/zhisbug/RFC/blob/rfc-objectref-collective/RFC-202012-objectref-compatible-collectives/rfc.md

Point-to-point Communication Functions

Ray.util.collective also supports P2P send/recv functions between processes or GPU
devices. See below the signatures of send and recv APIs; both imperative and declarative
versions of the APIs are provided. The declarative set of send/recv calls are still working in
progress.

def send(tensor, dst_rank: int, group_name: str = "default"):​
 """Send a tensor to a remote process synchronously.​
​
 Args:​
 tensor: the tensor to send.​
 dst_rank (int): the rank of the destination process.​
 group_name (str): the name of the collective group.​
​
 Returns:​
 None​
 """​
​
​
def recv(tensor, src_rank: int, group_name: str = "default"):​
 """Receive a tensor from a remote process synchronously.​
​
 Args:​
 tensor: the received tensor.​
 src_rank (int): the rank of the source process.​
 group_name (str): the name of the collective group.​
​
 Returns:​
 None​
 """​
​
def send_ref(src_tensor_ref, dst_tensor_ref, group_name: str = "default"):​
 """Send a tensor to a destination process synchronously.​
​
 Args:​
 src_tensor_ref: the ObjectRef of the source tensor.​
 dst_tensor_ref: the ObjectRef of the destination tensor.​
 group_name (str): the name of the collective group.​
​
 Returns:​
 None​

11

 """​
​
def recv_ref(dst_tensor_ref, src_tensor_ref, group_name: str = "default"):​
 """Send a tensor to a destination process synchronously.​
​
 Args:​
 dst_tensor_ref: the ObjectRef of the destination tensor.​
 src_tensor_ref: the ObjectRef of the source tensor.​
 group_name (str): the name of the collective group.​
​
 Returns:​
 None​
 """

The send/recv exhibit the same behaviour with the collective functions.

●​ Imperative P2P functions are synchronous blocking calls -- a pair of send and recv
must be called together on paired processes in order to specify the entire
communication, and must successfully rendezvous with each other to proceed.

●​ Declarative P2P functions specify the P2P communication using a single API call, either
via send or recv. The ObjectRefs passed through send/recv calls are backed by POS,
hence have all the limitations that POS imposes.

Example Code

@ray.remote​
class Worker:​
 def __init__(self):​
 self.buffer = cupy.ones((10,), dtype=cupy.float32)​
​ ​
 def get_buffer(self)​
 return self.buffer​
 ​
 def do_send(self, target_rank=0):​
 # this call is blocking​
 col.send(target_rank)​
 ​
 def do_recv(self, src_rank=0):​
 # this call is blocking​
 col.recv(src_rank)​
 ​
 def do_allreduce(self):​
 # this call is blocking as well​

12

 col.allreduce(self.buffer)​
 return self.buffer​
​
​
Create two actors​
A = Worker.remote()​
B = Worker.remote()​
​
Put A and B in a collective group using existing APIs​
col.declare_collective_group([A, B], options={rank=[0, 1], ...})​
​
let A to send a message to B, the only way to trigger and complete this

send/recv is by:​
Note in the code below, a send/recv has to be specified once at each

worker​
ray.get([a.do_send.remote(target_rank=1), b.do_recv.remote(src_rank=0)])​
​
An anti-pattern: the following code will hang, because it does

instantiate the recv side call​
ray.get([a.do_send.remote(target_rank=1)])​
​
Declarative send/recv: specify a send/recv via refs​
A.recv_ref(B.get_buffer.remote())

Single-GPU and Multi-GPU Collective and P2P Functions
In many cluster setups, a machine usually has more than 1 GPUs, effectively leveraging the
GPU-GPU bandwidth can significantly improve communication performance.

ray.util.collective supports multi-GPU collective calls, in which case, a process
(actor/tasks) manages more than 1 GPUs (e.g., ray.remote(num_gpus=4)). Using multiGPU
collective functions are normally more performance-advantageous than spawning the number of
processes equal to the number of GPUs.

Some example signature of multi-GPU collective and P2P functions are below:

def allreduce_multigpu(tensor_list: list,​
 group_name: str = "default",​
 op=types.ReduceOp.SUM):​
 """Collective allreduce a list of tensors across the group.​
​

13

 Args:​
 tensor_list (List[tensor]): list of tensors to be allreduced,​
 each on a GPU.​
 group_name (str): the collective group name to perform allreduce.​
​
 Returns:​
 None​
 """​
​
​
def broadcast_multigpu(tensor_list,​
 src_rank: int = 0,​
 src_tensor: int = 0,​
 group_name: str = "default"):​
 """Broadcast the tensor from a source GPU to all other GPUs.​
​
 Args:​
 tensor_list: the tensors to broadcast (src) or receive (dst).​
 src_rank (int): the rank of the source process.​
 src_tensor (int): the index of the source GPU on the source process.​
 group_name (str): the collective group name to perform broadcast.​
​
 Returns:​
 None​
 """​
​
​
def reducescatter(tensor,​
 tensor_list: list,​
 group_name: str = "default",​
 op=types.ReduceOp.SUM):​
 """Reducescatter a list of tensors across the group.​
​
 Reduce the list of the tensors across each process in the group, then​
 scatter the reduced list of tensors -- one tensor for each process.​
​
 Args:​
 tensor: the resulted tensor on this process.​
 tensor_list (list): The list of tensors to be reduced and scattered.​
 group_name (str): the name of the collective group.​
 op: The reduce operation.​
​
 Returns:​

14

 None​
 """​
​
​
def send_multigpu(tensor,​
 dst_rank: int,​
 dst_gpu_index: int,​
 group_name: str = "default"):​
 """Send a tensor to a remote GPU synchronously.​
​
 The function assume each process owns >1 GPUs, and the sender​
 process and receiver process has equal number of GPUs.​
​
 Args:​
 tensor: the tensor to send, located on a GPU.​
 dst_rank (int): the rank of the destination process.​
 dst_gpu_index (int): the destination gpu index.​
 group_name (str): the name of the collective group.​
​
 Returns:​
 None​
 """

All multi-GPU APIs are with the following assumptions:
●​ Only NCCL backend is (will be) supported.
●​ Collective processes that make multi-GPU collective or P2P calls need to own the same

number of GPU devices.
●​ The input to multiGPU collective functions are normally a list of tensors, eash located on

a different GPU device.

Example Code

import ray.util.collective as collective​
from cupy.cuda import Device​

​
@ray.remote(num_gpus=2)​
class Worker:​
 def __init__(self):​
 with Device(0):​

15

 self.send1 = cp.ones((4,), dtype=cp.float32)​
 with Device(1):​
 self.send2 = cp.ones((4,), dtype=cp.float32) * 2​
 with Device(0):​
 self.recv1 = cp.ones((4,), dtype=cp.float32)​
 with Device(1):​
 self.recv2 = cp.ones((4,), dtype=cp.float32) * 2​
​
 def setup(self, world_size, rank):​
 collective.init_collective_group(world_size, rank, "nccl", "177")​
 return True​
​
 def allreduce_call(self):​
 collective.allreduce_multigpu([self.send1, self.send2], "177")​
 return [self.send1, self.send2], self.send1.device,

self.send2.device​
​
 def p2p_call(self):​
 if self.rank == 0:​
 collective.send_multigpu(self.send1 * 2, 1, 1, "8")​
 else:​
 collective.recv_multigpu(self.recv2, 0, 0, "8")​
 return self.recv2​
​
Note that the world size is 2 but there are 4 GPUs.​
num_workers = 2​
workers = []​
init_rets = []​
for i in range(num_workers):​
 w = Worker.remote()​
 workers.append(w)​
 init_rets.append(w.setup.remote(num_workers, i))​
a = ray.get(init_rets)​
results = ray.get([w.allreduce_call.remote() for w in workers])​
results = ray.get([w.p2p_call.remote() for w in workers])

16

Microbenchmarks

NCCL Microbenchmarks

●​ Benchmark #1: Single node, each node has two Titan X GPUs
○​ Spawning two actors, each actor is allocated with 1 GPU; Communication

between two actors
●​ Benchmark #2: single node, each node has two P40 GPUs; communication between two

GPUs
○​ Spawning two actors, each actor is allocated with 1 GPU; Communication

between two actors
●​ Benchmark #3: A cluster with 16 nodes, each node has 1 GPU

○​ Spawning up to 16 actors, each actor is allocated with 1 GPU; communication
between 16 actors.

●​ Benchmark #4: send/recv round-trip experiments on single AWS p3.8x, AWS g4dn.12,
and p2.8 instance

○​ 2 actors, each allocated with num_gpus=1, round trip.

GLOO Microbenchmarks
●​ A cluster with 16 nodes

○​ Spawning an actor process on each node (num_cpus=1); communicating
between 16 nodes.

Real Use case: Scaling Up Spacy Pipeline

Case Description
Spacy-ray is an extension that allows distributed training Spacy-based ML pipeline using Ray.
Spacy-ray implements a sharded parameter server by communicating gradients using the
ray.get() and ray.set() RPC calls. The slowness is mainly caused by (based on the
microbenchmark results):

●​ RPC is less optimized when using them to assemble PS-related operations.
●​ ray.get() and ray.set() causes substantial memory movement overhead when the

object is stored on GPU memory instead of RAM.
●​ ray.get() and ray.set() via Ray object store causes substantial overhead when

serializing and deserializing objects.

17

https://github.com/zhisbug/ray-scalable-ml-design/tree/main/pytorch/microbenchmark/primitives/results#gpu-tensor
https://docs.google.com/spreadsheets/d/1uBvGQ7ZbAxk7dcfwuqamAxc5TJMfrS4Y5bUIRfKa1aU/edit#gid=0
https://docs.google.com/spreadsheets/d/1uBvGQ7ZbAxk7dcfwuqamAxc5TJMfrS4Y5bUIRfKa1aU/edit#gid=0
https://github.com/zhisbug/ray-scalable-ml-design/tree/main/pytorch/microbenchmark/primitives/results#gpu-tensor-1
https://docs.google.com/spreadsheets/d/1l7aA3LtgXEw1R-kl1V6b87YGPhfDDRemIDgwJEMa4vs/edit#gid=0
https://docs.google.com/spreadsheets/d/1l7aA3LtgXEw1R-kl1V6b87YGPhfDDRemIDgwJEMa4vs/edit#gid=0
https://github.com/zhisbug/ray-scalable-ml-design/tree/main/pytorch/microbenchmark/primitives/results#cpu-tensor
https://github.com/explosion/spacy-ray
https://github.com/explosion/spacy-ray/blob/master/spacy_ray/proxies.py

Solution
We simply modify the communication method by replacing the ray.get() and ray.set() with
ray.util.collective.allreduce APIs, and keep the overall structure unchanged.

Key change to the original spacy-ray is the way that workers increment gradients (Below codes
are simplified for better readability, please refer to githubs for actual codes):

In spacy-ray, the worker first updates relevant status, then it updates the gradients if the
parameter is stored locally, or invokes the inc_grad() method remotely on the parameter
server shard that holds the parameter.

def inc_grad(self, key, value):​
 self._grad_counts[key] += 1 ​
 if key not in self._owned_keys:​
 peer = self.peers[key]​
 peer.inc_grad.remote(key, self._version[key], value)​
 else:​
 if self._grads.get(key) is None:​
 self._grads[key] = value.copy()​
 else:​
 self._grads[key] += value

In our implementation, all workers will invoke inc_grad() at the same time, and call
allreduce with operation SUM to communicate the gradients:

def inc_grad(self, key, value): ​
 self._grad_counts[key] += 1​
 grad = value.copy()​
 collective.allreduce(grad, "default")​
 if self._grads.get(key) is None:​
 self._grads[key] = value.copy()​
 else:​
 self._grads[key] += value

Implementation Details
We keep the same CLI as a spacy-ray. The user can modify the config file for training
hyperparameter and project.yml for cluster/pipeline settings. After specifying the desired setup,
and launching the ray cluster, the user can launch the distributed jobs using:

spacy project run ray-train

18

Side note: the original Spacy-ray depends on Ray v0.8; we migrate from Ray v0.8 to Ray v1.2
as well in order to use ray.util.collective.

Code Reference

●​ spacy_ray_nccl/proxies.py

Results

The runtime comparison for 1000 updates using spacy pipeline = ["tok2vec", "ner"] is shown
below. Computation and communication happen sequentially all on the default CUDA stream.
Mean and standard deviation are obtained by three trials (unit: second)

workers Spacy-ray spacy-ray-nccl-allred
uce

speedup

1 worker 137.5 ± 2.1 116.7 ± 2.51 1.18x

2 workers 354.1 ± 16.8 171.1 ± 1.11 2.07x

4 workers 523.9 ± 10.4 179.6 ± 2.91 2.92x

8 workers 710.1 ± 3.0 205.8 ± 1.20 3.45x

16 workers 1296.1 ± 42.1 248.3 ± 3.63 5.22x

Absolute scalability (system throughput compared to 1 worker. For n workers, it is computed by

(n * runtime of 1 worker) / (runtime of n workers)):

Comparison Spacy-ray spacy-ray-nccl

2 workers 0.77 1.36

4 workers 1.05 2.60

8 workers 1.55 4.54

16 workers 1.70 7.52

19

https://github.com/YLJALDC/spacy_ray_nccl

Runtime Comparison

Speedup Comparison

Scalability Comparison

20

Summary of Results
The experiments on 1, 2, 4, 8, 16 nodes (each with 1 GPU) show that our newly added
collective functionality enables more scalability. One the 16 nodes setting, we speed up training
by 5.22x speedup over the original Spacy-ray, using a single GPU NULL stream for both
computation and communication. The code has been merged into Ray master.

A WIP experimental multi-stream version that allocates separate streams for NCCL kernels (so
the computation and communication is overlapped) is under development, and preliminary
results show around 6.82x speedup over spacy-ray.

21

	Collective in Ray
	
	
	Motivation
	Status
	Collectives Support Matrix
	Supported Tensor Types

	Importing and Code References
	APIs
	Initialization
	Example Code

	Basic APIs
	Collective Functions
	Imperative collective APIs
	[WIP] Declarative Collective APIs
	Example Code

	Point-to-point Communication Functions
	Example Code

	Single-GPU and Multi-GPU Collective and P2P Functions
	Example Code

	Microbenchmarks
	NCCL Microbenchmarks
	GLOO Microbenchmarks

	Real Use case: Scaling Up Spacy Pipeline
	Case Description
	Solution
	Implementation Details
	Results
	
	
	Runtime Comparison
	
	Speedup Comparison
	
	
	Summary of Results

