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Motivation 
See this RFC for a full description of why we need collectives in Ray. 

Status 

Collectives Support Matrix 
See below the support matrix for collective calls with different backends. NCCL-based collective 
are in place (merged to Ray master) whereas GLOO support is mostly working in progress.  

●​ ✘: do not have plan to support them. 
●​ WIP: in implementation, or to be merged 
●​ ✓: in Ray master 

 
 

Backend GLOO NCCL 

Device CPU GPU CPU GPU 

send ✓ ✘ ✘ ✓ 

recv ✓ ✘ ✘ ✓ 

broadcast ✓ ✘ ✘ ✓ 

all_reduce ✓ ✘ ✘ ✓ 

reduce ✓ ✘ ✘ ✓ 

all_gather ✓ ✘ ✘ ✓ 
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https://github.com/zhisbug/ray/blob/rfc-collective-in-ray/doc/community/rfc-20201119-collective-in-ray/20201119-collective-in-ray.md
https://github.com/facebookincubator/gloo
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/overview.html


gather WIP ✘ ✘ ✘ 

scatter WIP ✘ ✘ ✘ 

reduce_scatter ✓ ✘ ✘ ✓ 

all_to_all ✘ ✘ ✘ WIP 

barrier ✓ ✘ ✘ ✓ 

Supported Tensor Types 
-​ torch.Tensor  

-​ numpy.ndarray 

-​ cupy.ndarray 

Importing and Code References 
To use these APIs, users are expected to import the collective package in their actor/task or 
driver code via: 
 

import ray.util.collective as col 

 
Code references: 

●​ python/ray/util/collective/collective.py 
●​ python/ray/util/collective/types.py 
●​ python/ray/util/collective/collective_group/basic_collective_group.py 
●​ python/ray/util/collective/collective_group/nccl_collective_group.py 
●​ python/ray/util/collective/examples 

 

APIs 
This section describes the user APIs of the collective functions under ray.util.collective. 
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https://github.com/ray-project/ray/blob/master/python/ray/util/collective/collective.py
https://github.com/ray-project/ray/blob/master/python/ray/util/collective/types.py
https://github.com/ray-project/ray/blob/master/python/ray/util/collective/collective_group/base_collective_group.py
https://github.com/ray-project/ray/blob/master/python/ray/util/collective/collective_group/nccl_collective_group.py
https://github.com/ray-project/ray/tree/master/python/ray/util/collective/examples


Initialization 
Collective functions operate on collective groups. A collective group contains a number of 
processes (in Ray, Ray-managed actors or tasks) that will enter the collective function calls. 
Before making collective calls, we expect users to declare a set of actors/tasks, statically, as a 
collective group. We currently provide three APIs for collective group initialization. 
 

def init_collective_group(world_size: int,​
                          rank: int,​
                          backend=types.Backend.NCCL,​
                          group_name: str = "default"):​
   """Initialize a collective group inside an actor/task process.​
​
   Args:​
       world_size (int): the total number of processes in the group.​
       rank (int): the rank of the current process.​
       backend: the CCL backend to use, NCCL or GLOO.​
       group_name (str): the name of the collective group.​
​
   Returns:​
       None​
   """ 

 
This above API is supposed to be called inside an actor/task code. Every actor/task that enters 
the collective call shall make the above call at least once in order to rendezvous with each other. 
 
Alternatively, we provide a declarative API that enables declaring collective groups in driver 
programs (i.e., out of the collective process). 
 

def declare_collective_group(actors,​
                             world_size: int,​
                             ranks: List[int],​
                             backend=types.Backend.NCCL,​
                             group_name: str = "default"):​
   """Declare a list of actors as a collective group.​
​
   Note: This function should be called in a driver process.​
​
   Args:​
       actors (list): a list of actors to be set in a collective group.​
       world_size (int): the total number of processes in the group.​
       ranks (List[int]): the rank of each actor.​
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       backend: the CCL backend to use, NCCL or GLOO.​
       group_name (str): the name of the collective group.​
​
   Returns:​
       None​
   """ 

 
 
Note that for the same set of actors/task processes, multiple collective groups can be 
constructed, with group_name (str) as their unique identifier. This enables to specify complex 
communication patterns between different (sub)set of processes. 

Example Code 

@ray.remote(num_gpus=1)​
class Worker:​
   def __init__(self):​
       self.send = cp.ones((4, ), dtype=cp.float32)​
       self.recv = cp.zeros((4, ), dtype=cp.float32)​
​
   def setup(self, world_size, rank):​
       collective.init_collective_group(world_size, rank, "nccl", "default")​
       return True​
​
   def compute(self):​
       collective.allreduce(self.send, "default")​
       return self.send​
​
   def destroy(self):​
       collective.destroy_group()​
​
# imperative​
num_workers = 2​
workers = []​
init_rets = []​
for i in range(num_workers):​
   w = Worker.remote()​
   workers.append(w)​
   init_rets.append(w.setup.remote(num_workers, i))​
_ = ray.get(init_rets)​
results = ray.get([w.compute.remote() for w in workers])​
​
​
# declarative​
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for i in range(num_workers):​
   w = Worker.remote()​
   workers.append(w)​
_options = {​
   "group_name": "177",​
   "world_size": 2,​
   "ranks": [0, 1],​
   "backend": "nccl"​
}​
collective.declare_collective_group(workers, **_options)​
results = ray.get([w.compute.remote() for w in workers]) 

 

 

Basic APIs 
A set of basic APIs to query backend availability, group existence, group world size, or process 
ranks, or destroy groups, are provided. See below their signatures. 
 

def nccl_available():​
    """Check if nccl backend is available."""​
​
def gloo_available():​
    """Check if gloo backend is available."""​
​
​
def is_group_initialized(group_name):​
   """Check if the group is initialized in this process by the group name."""​
​
​
def destroy_collective_group(group_name: str = "default") -> None:​
   """Destroy a collective group given its group name."""​
​
​
def get_rank(group_name: str = "default") -> int:​
   """Return the rank of this process in the given group.​
​
   Args:​
       group_name (str): the name of the group to query​
​
   Returns:​
       the rank of this process in the named group,​
       -1 if the group does not exist or the process does​
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       not belong to the group.​
   """​
​
def get_world_size(group_name: str = "default") -> int:​
   """Return the size of the collective group with the given name.​
​
   Args:​
       group_name: the name of the group to query​
​
   Returns:​
       The world size of the collective group, -1 if the group does​
           not exist or the process does not belong to the group.​
   """ 

 

Collective Functions 
 
Check the matrix for the current status of supported collective calls and backend. 
 
We currently provide two classes of APIs to make collective calls: imperative collective APIs, 
and declarative collective APIs. 
 

Imperative collective APIs 
Below are some example signatures of the collective functions: 
 

def allreduce(tensor, group_name: str = "default", op=types.ReduceOp.SUM):​
   """Collective allreduce the tensor across the group.​
​
   Args:​
       tensor: the tensor to be all-reduced on this process.​
       group_name (str): the collective group name to perform allreduce.​
       op: the reduce operation.​
​
   Returns:​
       None​
   """​
​
def broadcast(tensor, src_rank: int = 0, group_name: str = "default"):​
   """Broadcast the tensor from a source process to all others.​
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​
   Args:​
       tensor: the tensor to be broadcasted (src) or received (dst).​
       src_rank (int): the rank of the source process.​
       group_name (str): the collective group name to perform broadcast.​
​
   Returns:​
       None​
   """​
​
​
def allgather(tensor_list: list, tensor, group_name: str = "default"):​
   """Allgather tensors from each process of the group into a list.​
​
   Args:​
       tensor_list (list): the results, stored as a list of tensors.​
       tensor: the tensor (to be gathered) in the current process​
       group_name (str): the name of the collective group.​
​
   Returns:​
       None​
   """ 

 

 
The imperative APIs exhibit the following behaviours: 

●​ All the collective APIs are synchronous blocking calls。 
●​ Since each API only specifies a part of the collective communication, the API is expected 

to be called by each participating process of the (pre-declared) collective group. Upon all 
the processes have made the call and rendezvous with each other, the collective 
communication happens and proceeds. 

●​ The APIs are imperative --- they need to be used inside the collective process 
(actor/task) code. 

[WIP] Declarative Collective APIs 
There is an ongoing effort on developing a set of declarative collective APIs, in addition to the 
imperative one. See the RFC-202012-ObjectRef-compatible-collectives for a full description of 
the motivation and design. 
 
Below are some example signatures of the declarative collective APIs. Note that these APIs 
are under development, have not been merged into Ray master, and are still subject to 
changes. 
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def allreduce_refs(tensor_refs: list,​
                  group_name: str = "default",​
                  op=types.ReduceOp.SUM):​
   """Collective allreduce the tensors across the group.​
​
   This APIs takes a list of ObjectRefs as input instead of the tensors.​
​
   Args:​
       tensor_refs: the ObjectRefs to the list of tensors; Each ref 

corresponds   to a tensor on a collective participant process.​
       group_name (str): the collective group name to perform allreduce.​
       op: The reduce operation.​
​
   Returns:​
       None​
   """​
​
def reduce_refs(tensor_refs,​
               dst_rank: int = 0,​
               group_name: str = "default",​
               op=types.ReduceOp.SUM):​
   """Reduce the tensors across the group to the destination rank.​
​
   Args:​
       tensor_refs: the ObjectRefs to the list of tensors; each ref 

corresponds to a tensor on a collective participant process.​
       dst_rank (int): the rank of the destination process.​
       group_name (str): the collective group name to perform reduce.​
       op: The reduce operation.​
​
   Returns:​
       None​
   """​
​
​
def allgather_refs(tensor_list_refs: list,​
                  tensor_refs,​
                  group_name : str = "default"):​
   """Allgather tensors from each process of the group into a list.​
​
   Args:​
       tensor_list_refs (list): a list of ObjectRefs, each ObjectRef refers 
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to a list of tensors​
           on a collective process.​
       tensor_refs (list): a list of ObjectRefs, each ObjectRef refers to a 

tensor on a collective​
           process.​
       group_name (str): the name of the collective group.​
​
   Returns:​
       None​
   """ 

 
 
The declarative collective APIs exhibits the following behaviors and patterns: 

●​ Different from the imperative ones, the declarative collective APIs specify the entire 
collective communication via a single API call, by passing ObjectRefs of tensors owned 
by all other participating processes. These collective-compatible ObjectRefs are realized 
by a simplified Python Object Store (POS, see 
RFC-202012-ObjectRef-compatible-collectives for details), with limited functionality 
compared to a normal Ray ObjectRef. 

●​ Hence, the declarative API is supposed to be called in a driver program, instead of inside 
the actor/task code. 

Example Code 
 

@ray.remote​
class Worker:​
    def __init__(self):​
        self.buffer = cupy.ones((10,), dtype=cupy.float32)​
​ ​
    def get_buffer(self)​
        Return self.buffer 

 

# Create two actors and create a collective group​
A = Worker.remote()​
B = Worker.remote()​
col.declare_collective_group([A, B], options={rank=[0, 1], ...})​
​
# Specify a collective allreduce "completely" instead of "partially" on 

each actor​
col.allreduce_refs([A.get_buffer.remote(), B.get_buffer.remote()]) 
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Point-to-point Communication Functions 

Ray.util.collective also supports P2P send/recv functions between processes or GPU 
devices. See below the signatures of send and recv APIs; both imperative and declarative 
versions of the APIs are provided. The declarative set of send/recv calls are still working in 
progress. 

 

def send(tensor, dst_rank: int, group_name: str = "default"):​
   """Send a tensor to a remote process synchronously.​
​
   Args:​
       tensor: the tensor to send.​
       dst_rank (int): the rank of the destination process.​
       group_name (str): the name of the collective group.​
​
   Returns:​
       None​
   """​
​
​
def recv(tensor, src_rank: int, group_name: str = "default"):​
   """Receive a tensor from a remote process synchronously.​
​
   Args:​
       tensor: the received tensor.​
       src_rank (int): the rank of the source process.​
       group_name (str): the name of the collective group.​
​
   Returns:​
       None​
   """​
​
def send_ref(src_tensor_ref, dst_tensor_ref, group_name: str = "default"):​
   """Send a tensor to a destination process synchronously.​
​
   Args:​
       src_tensor_ref: the ObjectRef of the source tensor.​
       dst_tensor_ref: the ObjectRef of the destination tensor.​
       group_name (str): the name of the collective group.​
​
   Returns:​
       None​
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   """​
​
def recv_ref(dst_tensor_ref, src_tensor_ref, group_name: str = "default"):​
   """Send a tensor to a destination process synchronously.​
​
   Args:​
       dst_tensor_ref: the ObjectRef of the destination tensor.​
       src_tensor_ref: the ObjectRef of the source tensor.​
       group_name (str): the name of the collective group.​
​
   Returns:​
       None​
   """ 

 
The send/recv exhibit the same behaviour with the collective functions.  

●​ Imperative P2P functions are synchronous blocking calls -- a pair of send and recv 
must be called together on paired processes in order to specify the entire 
communication, and must successfully rendezvous with each other to proceed. 

●​ Declarative P2P functions specify the P2P communication using a single API call, either 
via send or recv. The ObjectRefs passed through send/recv calls are backed by POS, 
hence have all the limitations that POS imposes. 

Example Code 
 

@ray.remote​
class Worker:​
    def __init__(self):​
        self.buffer = cupy.ones((10,), dtype=cupy.float32)​
​ ​
    def get_buffer(self)​
        return self.buffer​
    ​
    def do_send(self, target_rank=0):​
        # this call is blocking​
        col.send(target_rank)​
    ​
    def do_recv(self, src_rank=0):​
        # this call is blocking​
        col.recv(src_rank)​
        ​
    def do_allreduce(self):​
        # this call is blocking as well​
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        col.allreduce(self.buffer)​
        return self.buffer​
​
​
# Create two actors​
A = Worker.remote()​
B = Worker.remote()​
​
# Put A and B in a collective group using existing APIs​
col.declare_collective_group([A, B], options={rank=[0, 1], ...})​
​
# let A to send a message to B, the only way to trigger and complete this 

send/recv is by:​
# Note in the code below, a send/recv has to be specified once at each 

worker​
ray.get([a.do_send.remote(target_rank=1), b.do_recv.remote(src_rank=0)])​
​
# An anti-pattern: the following code will hang, because it does 

instantiate the recv side call​
ray.get([a.do_send.remote(target_rank=1)])​
​
# Declarative send/recv: specify a send/recv via refs​
A.recv_ref(B.get_buffer.remote()) 

 

Single-GPU and Multi-GPU Collective and P2P Functions 
In many cluster setups, a machine usually has more than 1 GPUs, effectively leveraging the 
GPU-GPU bandwidth can significantly improve communication performance.  
 

ray.util.collective supports multi-GPU collective calls, in which case, a process 
(actor/tasks) manages more than 1 GPUs (e.g., ray.remote(num_gpus=4)). Using multiGPU 
collective functions are normally more performance-advantageous than spawning the number of 
processes equal to the number of GPUs.  
 
Some example signature of multi-GPU collective and P2P functions are below: 
 

def allreduce_multigpu(tensor_list: list,​
                       group_name: str = "default",​
                       op=types.ReduceOp.SUM):​
   """Collective allreduce a list of tensors across the group.​
​
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   Args:​
       tensor_list (List[tensor]): list of tensors to be allreduced,​
           each on a GPU.​
       group_name (str): the collective group name to perform allreduce.​
​
   Returns:​
       None​
   """​
​
​
def broadcast_multigpu(tensor_list,​
                      src_rank: int = 0,​
                      src_tensor: int = 0,​
                      group_name: str = "default"):​
   """Broadcast the tensor from a source GPU to all other GPUs.​
​
   Args:​
       tensor_list: the tensors to broadcast (src) or receive (dst).​
       src_rank (int): the rank of the source process.​
       src_tensor (int): the index of the source GPU on the source process.​
       group_name (str): the collective group name to perform broadcast.​
​
   Returns:​
       None​
   """​
​
​
def reducescatter(tensor,​
                 tensor_list: list,​
                 group_name: str = "default",​
                 op=types.ReduceOp.SUM):​
   """Reducescatter a list of tensors across the group.​
​
   Reduce the list of the tensors across each process in the group, then​
   scatter the reduced list of tensors -- one tensor for each process.​
​
   Args:​
       tensor: the resulted tensor on this process.​
       tensor_list (list): The list of tensors to be reduced and scattered.​
       group_name (str): the name of the collective group.​
       op: The reduce operation.​
​
   Returns:​
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       None​
   """​
​
​
def send_multigpu(tensor,​
                 dst_rank: int,​
                 dst_gpu_index: int,​
                 group_name: str = "default"):​
   """Send a tensor to a remote GPU synchronously.​
​
   The function assume each process owns >1 GPUs, and the sender​
   process and receiver process has equal number of GPUs.​
​
   Args:​
       tensor: the tensor to send, located on a GPU.​
       dst_rank (int): the rank of the destination process.​
       dst_gpu_index (int): the destination gpu index.​
       group_name (str): the name of the collective group.​
​
   Returns:​
       None​
   """ 

 

 

All multi-GPU APIs are with the following assumptions: 
●​ Only NCCL backend is (will be) supported. 
●​ Collective processes that make multi-GPU collective or P2P calls need to own the same 

number of GPU devices. 
●​ The input to multiGPU collective functions are normally a list of tensors, eash located on 

a different GPU device. 
 

Example Code 
 

import ray.util.collective as collective​
from cupy.cuda import Device​
 

​
@ray.remote(num_gpus=2)​
class Worker:​
   def __init__(self):​
       with Device(0):​
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           self.send1 = cp.ones((4, ), dtype=cp.float32)​
       with Device(1):​
           self.send2 = cp.ones((4, ), dtype=cp.float32) * 2​
       with Device(0):​
           self.recv1 = cp.ones((4, ), dtype=cp.float32)​
       with Device(1):​
           self.recv2 = cp.ones((4, ), dtype=cp.float32) * 2​
​
   def setup(self, world_size, rank):​
       collective.init_collective_group(world_size, rank, "nccl", "177")​
       return True​
​
   def allreduce_call(self):​
       collective.allreduce_multigpu([self.send1, self.send2], "177")​
       return [self.send1, self.send2], self.send1.device, 

self.send2.device​
​
   def p2p_call(self):​
       if self.rank == 0:​
          collective.send_multigpu(self.send1 * 2, 1, 1, "8")​
       else:​
          collective.recv_multigpu(self.recv2, 0, 0, "8")​
       return self.recv2​
​
# Note that the world size is 2 but there are 4 GPUs.​
num_workers = 2​
workers = []​
init_rets = []​
for i in range(num_workers):​
   w = Worker.remote()​
   workers.append(w)​
   init_rets.append(w.setup.remote(num_workers, i))​
a = ray.get(init_rets)​
results = ray.get([w.allreduce_call.remote() for w in workers])​
results = ray.get([w.p2p_call.remote() for w in workers]) 
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Microbenchmarks 

NCCL Microbenchmarks 
 

●​ Benchmark #1: Single node, each node has two Titan X GPUs 
○​ Spawning two actors, each actor is allocated with 1 GPU; Communication 

between two actors 
●​ Benchmark #2: single node, each node has two P40 GPUs; communication between two 

GPUs 
○​ Spawning two actors, each actor is allocated with 1 GPU; Communication 

between two actors 
●​ Benchmark #3: A cluster with 16 nodes, each node has 1 GPU 

○​ Spawning up to 16 actors, each actor is allocated with 1 GPU; communication 
between 16 actors. 

●​ Benchmark #4: send/recv round-trip experiments on single AWS p3.8x, AWS g4dn.12, 
and p2.8 instance 

○​ 2 actors, each allocated with num_gpus=1, round trip. 

GLOO Microbenchmarks 
●​ A cluster with 16 nodes 

○​ Spawning an actor process on each node (num_cpus=1); communicating 
between 16 nodes. 

Real Use case: Scaling Up Spacy Pipeline 

Case Description 
Spacy-ray is an extension that allows distributed training Spacy-based ML pipeline using Ray.  
Spacy-ray implements a sharded parameter server by communicating gradients using the 
ray.get() and ray.set() RPC calls. The slowness is mainly caused by (based on the 
microbenchmark results): 

●​ RPC is less optimized when using them to assemble PS-related operations. 
●​ ray.get() and ray.set() causes substantial memory movement overhead when the 

object is stored on GPU memory instead of RAM. 
●​ ray.get() and ray.set() via Ray object store causes substantial overhead when 

serializing and deserializing objects. 
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Solution 
We simply modify the communication method by replacing the ray.get() and ray.set() with 
ray.util.collective.allreduce APIs, and keep the overall structure unchanged.  
 
Key change to the original spacy-ray is the way that workers increment gradients (Below codes 
are simplified for better readability, please refer to githubs for actual codes):   
 
In spacy-ray, the worker first updates relevant status, then it updates the gradients if the 
parameter is stored locally, or invokes the inc_grad() method remotely on the parameter 
server shard that holds the parameter.  

 

def inc_grad(self, key, value):​
    self._grad_counts[key] += 1 ​
    if key not in self._owned_keys:​
        peer = self.peers[key]​
        peer.inc_grad.remote(key, self._version[key], value)​
    else:​
        if self._grads.get(key) is None:​
            self._grads[key] = value.copy()​
        else:​
            self._grads[key] += value  

 
In our implementation, all workers will invoke inc_grad() at the same time, and call    
allreduce with operation SUM to communicate the gradients: 

 

def inc_grad(self, key, value): ​
    self._grad_counts[key] += 1​
    grad = value.copy()​
    collective.allreduce(grad, "default")​
    if self._grads.get(key) is None:​
        self._grads[key] = value.copy()​
    else:​
        self._grads[key] += value 

Implementation Details 
We keep the same CLI as a spacy-ray. The user can modify the config file for training 
hyperparameter and project.yml for cluster/pipeline settings. After specifying the desired setup, 
and launching the ray cluster, the user can launch the distributed jobs using:  

spacy project run ray-train 
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Side note: the original Spacy-ray depends on Ray v0.8; we migrate from Ray v0.8 to Ray v1.2 
as well in order to use ray.util.collective. 
 
Code Reference 

●​ spacy_ray_nccl/proxies.py  
 

Results 
 
The runtime comparison for 1000 updates using spacy pipeline = ["tok2vec", "ner"] is shown 
below. Computation and communication happen sequentially all on the default CUDA stream. 
Mean and standard deviation are obtained by three trials (unit: second) 
 

# workers Spacy-ray spacy-ray-nccl-allred
uce 

speedup 

1 worker 137.5 ± 2.1 116.7 ± 2.51 1.18x 

2 workers 354.1 ± 16.8 171.1 ± 1.11 2.07x 

4 workers 523.9 ± 10.4 179.6 ± 2.91 2.92x 

8 workers 710.1 ± 3.0 205.8 ± 1.20 3.45x 

16 workers 1296.1 ± 42.1 248.3 ± 3.63 5.22x 
 
 
 
Absolute scalability (system throughput compared to 1 worker. For n workers, it is computed by 

(n * runtime of 1 worker) / (runtime of n workers) ): 

Comparison Spacy-ray spacy-ray-nccl 

2 workers 0.77 1.36 

4 workers 1.05 2.60 

8 workers 1.55 4.54 

16 workers 1.70 7.52 
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Runtime Comparison 

 

Speedup Comparison 

 

Scalability Comparison 
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Summary of Results 
The experiments on 1, 2, 4, 8, 16 nodes (each with 1 GPU) show that our newly added 
collective functionality enables more scalability. One the 16 nodes setting, we speed up training 
by 5.22x speedup over the original Spacy-ray, using a single GPU NULL stream for both 
computation and communication. The code has been merged into Ray master. 
 
A WIP experimental multi-stream version that allocates separate streams for NCCL kernels (so 
the computation and communication is overlapped) is under development, and preliminary 
results show around 6.82x speedup over spacy-ray. 
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