Collective in Ray

Motivation	2
Status Collectives Support Matrix Supported Tensor Types	2 2 3
Importing and Code References	3
APIs	3
Initialization	4
Example Code	5
Basic APIs	6
Collective Functions	7
Imperative collective APIs	7
[WIP] Declarative Collective APIs	8
Example Code	10
Point-to-point Communication Functions	11
Example Code	12
Single-GPU and Multi-GPU Collective and P2P Functions	13
Example Code	15
Microbenchmarks	17
NCCL Microbenchmarks	17
GLOO Microbenchmarks	17
Real Use case: Scaling Up Spacy Pipeline	17
Case Description	17
Solution	18
Implementation Details	19
Results	19
Summary of Results	21

Motivation

See this RFC for a full description of why we need collectives in Ray.

Status

Collectives Support Matrix

See below the support matrix for collective calls with different backends. NCCL-based collective are in place (merged to Ray master) whereas GLOO support is mostly working in progress.

- **x**: do not have plan to support them.
- WIP: in implementation, or to be merged
- ✓: in Ray master

Backend	GLOO		end GLOO NCCL	
Device	CPU	GPU	CPU	GPU
send	1	×	×	1
recv	1	×	×	1
broadcast	1	×	×	1
all_reduce	1	×	×	1
reduce	1	×	×	1
all_gather	1	×	×	1

gather	WIP	×	×	×
scatter	WIP	×	×	×
reduce_scatter	1	×	×	√
all_to_all	×	×	×	WIP
barrier	1	×	×	√

Supported Tensor Types

- torch.Tensor
- numpy.ndarray
- cupy.ndarray

Importing and Code References

To use these APIs, users are expected to import the collective package in their actor/task or driver code via:

import ray.util.collective as col

Code references:

- python/ray/util/collective/collective.py
- python/ray/util/collective/types.py
- python/ray/util/collective/collective group/basic collective group.py
- python/ray/util/collective/collective group/nccl collective group.py
- python/ray/util/collective/examples

APIs

This section describes the user APIs of the collective functions under ray.util.collective.

Initialization

Collective functions operate on *collective groups*. A collective group contains a number of processes (in Ray, Ray-managed actors or tasks) that will enter the collective function calls. Before making collective calls, we expect users to declare a set of actors/tasks, *statically*, as a collective group. We currently provide three APIs for collective group initialization.

This above API is supposed to be called inside an actor/task code. Every actor/task that enters the collective call shall make the above call at least once in order to rendezvous with each other.

Alternatively, we provide a declarative API that enables declaring collective groups in driver programs (i.e., out of the collective process).

```
backend: the CCL backend to use, NCCL or GLOO.
   group_name (str): the name of the collective group.

Returns:
   None
"""
```

Note that for the same set of actors/task processes, multiple collective groups can be constructed, with *group_name (str)* as their unique identifier. This enables to specify complex communication patterns between different (sub)set of processes.

```
@ray.remote(num gpus=1)
class Worker:
   def __init__(self):
       self.send = cp.ones((4, ), dtype=cp.float32)
       self.recv = cp.zeros((4, ), dtype=cp.float32)
   def setup(self, world size, rank):
       collective.init_collective_group(world_size, rank, "nccl", "default")
       return True
   def compute(self):
       collective.allreduce(self.send, "default")
       return self.send
   def destroy(self):
       collective.destroy_group()
# imperative
num\_workers = 2
workers = []
init rets = []
for i in range(num_workers):
   w = Worker.remote()
   workers.append(w)
   init_rets.append(w.setup.remote(num_workers, i))
_ = ray.get(init_rets)
results = ray.get([w.compute.remote() for w in workers])
# declarative
```

```
for i in range(num_workers):
    w = Worker.remote()
    workers.append(w)
_options = {
        "group_name": "177",
        "world_size": 2,
        "ranks": [0, 1],
        "backend": "nccl"
}
collective.declare_collective_group(workers, **_options)
results = ray.get([w.compute.remote() for w in workers])
```

Basic APIs

A set of basic APIs to query backend availability, group existence, group world size, or process ranks, or destroy groups, are provided. See below their signatures.

```
def nccl_available():
    """Check if nccl backend is available."""

def gloo_available():
    """Check if gloo backend is available."""

def is_group_initialized(group_name):
    """Check if the group is initialized in this process by the group name."""

def destroy_collective_group(group_name: str = "default") -> None:
    """Destroy a collective group given its group name."""

def get_rank(group_name: str = "default") -> int:
    """Return the rank of this process in the given group.

Args:
    group_name (str): the name of the group to query

Returns:
    the rank of this process in the named group,
    -1 if the group does not exist or the process does
```

Collective Functions

Check the matrix for the current status of supported collective calls and backend.

We currently provide two classes of APIs to make collective calls: <u>imperative collective APIs</u>, and <u>declarative collective APIs</u>.

Imperative collective APIs

Below are some example signatures of the collective functions:

```
def allreduce(tensor, group_name: str = "default", op=types.ReduceOp.SUM):
    """Collective allreduce the tensor across the group.

Args:
    tensor: the tensor to be all-reduced on this process.
    group_name (str): the collective group name to perform allreduce.
    op: the reduce operation.

Returns:
    None
    """

def broadcast(tensor, src_rank: int = 0, group_name: str = "default"):
    """Broadcast the tensor from a source process to all others.
```

```
Args:
    tensor: the tensor to be broadcasted (src) or received (dst).
    src_rank (int): the rank of the source process.
    group_name (str): the collective group name to perform broadcast.

Returns:
    None
"""

def allgather(tensor_list: list, tensor, group_name: str = "default"):
    """Allgather tensors from each process of the group into a list.

Args:
    tensor_list (list): the results, stored as a list of tensors.
    tensor: the tensor (to be gathered) in the current process
    group_name (str): the name of the collective group.

Returns:
    None
"""
```

The imperative APIs exhibit the following behaviours:

- All the collective APIs are synchronous blocking calls.
- Since each API only specifies a part of the collective communication, the API is expected
 to be called by each participating process of the (pre-declared) collective group. Upon all
 the processes have made the call and rendezvous with each other, the collective
 communication happens and proceeds.
- The APIs are imperative --- they need to be used inside the collective process (actor/task) code.

[WIP] Declarative Collective APIs

There is an ongoing effort on developing a set of *declarative* collective APIs, in addition to the imperative one. See the <u>RFC-202012-ObjectRef-compatible-collectives</u> for a full description of the motivation and design.

Below are some example signatures of the declarative collective APIs. **Note that these APIs** are under development, have not been merged into Ray master, and are still subject to changes.

```
def allreduce_refs(tensor_refs: list,
                  group name: str = "default",
                  op=types.ReduceOp.SUM):
   """Collective allreduce the tensors across the group.
   This APIs takes a list of ObjectRefs as input instead of the tensors.
  Args:
       tensor refs: the ObjectRefs to the list of tensors; Each ref
corresponds to a tensor on a collective participant process.
       group_name (str): the collective group name to perform allreduce.
       op: The reduce operation.
   Returns:
       None
def reduce_refs(tensor_refs,
               dst rank: int = 0,
               group_name: str = "default",
               op=types.ReduceOp.SUM):
   """Reduce the tensors across the group to the destination rank.
  Args:
       tensor_refs: the ObjectRefs to the list of tensors; each ref
corresponds to a tensor on a collective participant process.
       dst_rank (int): the rank of the destination process.
       group name (str): the collective group name to perform reduce.
       op: The reduce operation.
   Returns:
       None
   .....
def allgather refs(tensor list refs: list,
                  tensor_refs,
                  group name : str = "default"):
   """Allgather tensors from each process of the group into a list.
       tensor_list_refs (list): a list of ObjectRefs, each ObjectRef refers
```

The declarative collective APIs exhibits the following behaviors and patterns:

- Different from the imperative ones, the declarative collective APIs specify the entire
 collective communication via a single API call, by passing ObjectRefs of tensors owned
 by all other participating processes. These collective-compatible ObjectRefs are realized
 by a simplified Python Object Store (POS, see
 RFC-202012-ObjectRef-compatible-collectives for details), with limited functionality
 compared to a normal Ray ObjectRef.
- Hence, the declarative API is supposed to be called in a driver program, instead of inside the actor/task code.

```
@ray.remote
class Worker:
    def __init__(self):
        self.buffer = cupy.ones((10,), dtype=cupy.float32)

def get_buffer(self)
        Return self.buffer
```

```
# Create two actors and create a collective group
A = Worker.remote()
B = Worker.remote()
col.declare_collective_group([A, B], options={rank=[0, 1], ...})

# Specify a collective allreduce "completely" instead of "partially" on each actor
col.allreduce_refs([A.get_buffer.remote(), B.get_buffer.remote()])
```

Point-to-point Communication Functions

Ray.util.collective also supports P2P send/recv functions between processes or GPU devices. See below the signatures of send and recv APIs; both imperative and declarative versions of the APIs are provided. The declarative set of send/recv calls are still working in progress.

```
def send(tensor, dst_rank: int, group_name: str = "default"):
   """Send a tensor to a remote process synchronously.
  Args:
      tensor: the tensor to send.
      dst rank (int): the rank of the destination process.
      group_name (str): the name of the collective group.
   Returns:
      None
def recv(tensor, src rank: int, group name: str = "default"):
   """Receive a tensor from a remote process synchronously.
  Args:
      tensor: the received tensor.
      src rank (int): the rank of the source process.
      group_name (str): the name of the collective group.
   Returns:
      None
def send_ref(src_tensor_ref, dst_tensor_ref, group_name: str = "default"):
   """Send a tensor to a destination process synchronously.
  Args:
       src_tensor_ref: the ObjectRef of the source tensor.
      dst tensor ref: the ObjectRef of the destination tensor.
      group_name (str): the name of the collective group.
   Returns:
      None
```

```
def recv_ref(dst_tensor_ref, src_tensor_ref, group_name: str = "default"):
    """Send a tensor to a destination process synchronously.

Args:
    dst_tensor_ref: the ObjectRef of the destination tensor.
    src_tensor_ref: the ObjectRef of the source tensor.
    group_name (str): the name of the collective group.

Returns:
    None
    """
```

The send/recv exhibit the same behaviour with the collective functions.

- Imperative P2P functions are synchronous blocking calls -- a pair of send and recv must be called together on paired processes in order to specify the entire communication, and must successfully rendezvous with each other to proceed.
- Declarative P2P functions specify the P2P communication using a single API call, either
 via send or recv. The ObjectRefs passed through send/recv calls are backed by POS,
 hence have all the limitations that POS imposes.

```
@ray.remote
class Worker:
    def __init__(self):
        self.buffer = cupy.ones((10,), dtype=cupy.float32)

def get_buffer(self)
        return self.buffer

def do_send(self, target_rank=0):
    # this call is blocking
    col.send(target_rank)

def do_recv(self, src_rank=0):
    # this call is blocking
    col.recv(src_rank)

def do_allreduce(self):
    # this call is blocking as well
```

```
col.allreduce(self.buffer)
        return self.buffer
# Create two actors
A = Worker.remote()
B = Worker.remote()
# Put A and B in a collective group using existing APIs
col.declare_collective_group([A, B], options={rank=[0, 1], ...})
# let A to send a message to B, the only way to trigger and complete this
send/recv is by:
# Note in the code below, a send/recv has to be specified once at each
ray.get([a.do send.remote(target rank=1), b.do recv.remote(src rank=0)])
# An anti-pattern: the following code will hang, because it does
instantiate the recv side call
ray.get([a.do send.remote(target rank=1)])
# Declarative send/recv: specify a send/recv via refs
A.recv_ref(B.get_buffer.remote())
```

Single-GPU and Multi-GPU Collective and P2P Functions

In many cluster setups, a machine usually has more than 1 GPUs, effectively leveraging the GPU-GPU bandwidth can significantly improve communication performance.

ray.util.collective supports multi-GPU collective calls, in which case, a process (actor/tasks) manages more than 1 GPUs (e.g., ray.remote(num_gpus=4)). Using multiGPU collective functions are normally more performance-advantageous than spawning the number of processes equal to the number of GPUs.

Some example signature of multi-GPU collective and P2P functions are below:

```
tensor_list (List[tensor]): list of tensors to be allreduced,
           each on a GPU.
      group name (str): the collective group name to perform allreduce.
   Returns:
      None
   .....
def broadcast multigpu(tensor list,
                      src rank: int = 0,
                      src tensor: int = 0,
                      group name: str = "default"):
   """Broadcast the tensor from a source GPU to all other GPUs.
  Args:
      tensor_list: the tensors to broadcast (src) or receive (dst).
      src rank (int): the rank of the source process.
      src tensor (int): the index of the source GPU on the source process.
      group name (str): the collective group name to perform broadcast.
   Returns:
      None
def reducescatter(tensor,
                 tensor list: list,
                 group name: str = "default",
                 op=types.ReduceOp.SUM):
   """Reducescatter a list of tensors across the group.
   Reduce the list of the tensors across each process in the group, then
   scatter the reduced list of tensors -- one tensor for each process.
  Args:
      tensor: the resulted tensor on this process.
      tensor list (list): The list of tensors to be reduced and scattered.
      group name (str): the name of the collective group.
      op: The reduce operation.
   Returns:
```

All multi-GPU APIs are with the following assumptions:

- Only NCCL backend is (will be) supported.
- Collective processes that make multi-GPU collective or P2P calls need to own the same number of GPU devices.
- The input to multiGPU collective functions are normally a list of tensors, eash located on a different GPU device.

```
import ray.util.collective as collective
from cupy.cuda import Device

@ray.remote(num_gpus=2)
class Worker:
    def __init__(self):
        with Device(0):
```

```
self.send1 = cp.ones((4, ), dtype=cp.float32)
       with Device(1):
           self.send2 = cp.ones((4, ), dtype=cp.float32) * 2
       with Device(0):
           self.recv1 = cp.ones((4, ), dtype=cp.float32)
       with Device(1):
           self.recv2 = cp.ones((4, ), dtype=cp.float32) * 2
   def setup(self, world size, rank):
       collective.init_collective_group(world_size, rank, "nccl", "177")
       return True
   def allreduce call(self):
       collective.allreduce multigpu([self.send1, self.send2], "177")
       return [self.send1, self.send2], self.send1.device,
self.send2.device
   def p2p_call(self):
       if self.rank == 0:
          collective.send multigpu(self.send1 * 2, 1, 1, "8")
       else:
          collective.recv_multigpu(self.recv2, 0, 0, "8")
       return self.recv2
# Note that the world size is 2 but there are 4 GPUs.
num workers = 2
workers = []
init_rets = []
for i in range(num workers):
   w = Worker.remote()
  workers.append(w)
   init_rets.append(w.setup.remote(num_workers, i))
a = ray.get(init rets)
results = ray.get([w.allreduce_call.remote() for w in workers])
results = ray.get([w.p2p_call.remote() for w in workers])
```

Microbenchmarks

NCCL Microbenchmarks

- Benchmark #1: Single node, each node has two Titan X GPUs
 - Spawning two actors, each actor is allocated with 1 GPU; Communication between two actors
- Benchmark #2: single node, each node has two P40 GPUs; communication between two GPUs
 - Spawning two actors, each actor is allocated with 1 GPU; Communication between two actors
- Benchmark #3: A cluster with 16 nodes, each node has 1 GPU
 - Spawning up to 16 actors, each actor is allocated with 1 GPU; communication between 16 actors.
- Benchmark #4: send/recv round-trip experiments on single AWS p3.8x, AWS g4dn.12, and p2.8 instance
 - 2 actors, each allocated with num_gpus=1, round trip.

GLOO Microbenchmarks

- A cluster with 16 nodes
 - Spawning an actor process on each node (num_cpus=1); communicating between 16 nodes.

Real Use case: Scaling Up Spacy Pipeline

Case Description

<u>Spacy-ray</u> is an extension that allows distributed training Spacy-based ML pipeline using Ray. Spacy-ray implements a <u>sharded parameter server</u> by communicating gradients using the ray.get() and ray.set() RPC calls. The slowness is mainly caused by (based on the microbenchmark results):

- RPC is less optimized when using them to assemble PS-related operations.
- ray.get() and ray.set() causes substantial memory movement overhead when the object is stored on GPU memory instead of RAM.
- ray.get() and ray.set() via Ray object store causes substantial overhead when serializing and deserializing objects.

Solution

We simply modify the communication method by replacing the ray.get() and ray.set() with ray.util.collective.allreduce APIs, and keep the overall structure unchanged.

Key change to the original spacy-ray is the way that workers increment gradients (Below codes are simplified for better readability, please refer to githubs for actual codes):

In spacy-ray, the worker first updates relevant status, then it updates the gradients if the parameter is stored locally, or invokes the <code>inc_grad()</code> method remotely on the parameter server shard that holds the parameter.

```
def inc_grad(self, key, value):
    self._grad_counts[key] += 1
    if key not in self._owned_keys:
        peer = self.peers[key]
        peer.inc_grad.remote(key, self._version[key], value)
    else:
        if self._grads.get(key) is None:
            self._grads[key] = value.copy()
        else:
            self._grads[key] += value
```

In our implementation, all workers will invoke inc_grad() at the same time, and call allreduce with operation SUM to communicate the gradients:

```
def inc_grad(self, key, value):
    self._grad_counts[key] += 1
    grad = value.copy()
    collective.allreduce(grad, "default")
    if self._grads.get(key) is None:
        self._grads[key] = value.copy()
    else:
        self._grads[key] += value
```

Implementation Details

We keep the same CLI as a spacy-ray. The user can modify the config file for training hyperparameter and project.yml for cluster/pipeline settings. After specifying the desired setup, and launching the ray cluster, the user can launch the distributed jobs using:

```
spacy project run ray-train
```

Side note: the original Spacy-ray depends on Ray v0.8; we migrate from Ray v0.8 to Ray v1.2 as well in order to use ray.util.collective.

Code Reference

spacy ray nccl/proxies.py

Results

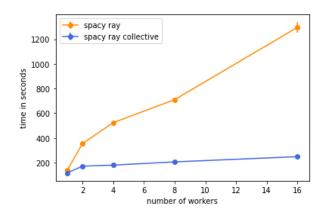
The runtime comparison for 1000 updates using spacy pipeline = ["tok2vec", "ner"] is shown below. Computation and communication happen sequentially all on the **default CUDA stream**. Mean and standard deviation are obtained by three trials (unit: second)

# workers	Spacy-ray	spacy-ray-nccl-allred uce	speedup
1 worker	137.5 ± 2.1	116.7 ± 2.51	1.18x
2 workers	354.1 ± 16.8	171.1 ± 1.11	2.07x
4 workers	523.9 ± 10.4	179.6 ± 2.91	2.92x
8 workers	710.1 ± 3.0	205.8 ± 1.20	3.45x
16 workers	1296.1 ± 42.1	248.3 ± 3.63	5.22x

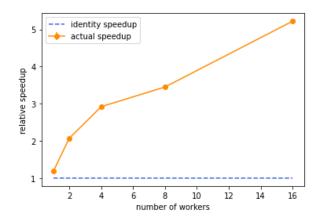
Absolute scalability (system throughput compared to 1 worker. For n workers, it is computed by (n * runtime of 1 worker) / (runtime of n workers)):

Comparison	Spacy-ray	spacy-ray-nccl
2 workers	0.77	1.36
4 workers	1.05	2.60
8 workers	1.55	4.54
16 workers	1.70	7.52

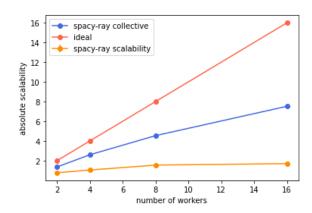
Runtime Comparison



Speedup Comparison



Scalability Comparison



Summary of Results

The experiments on 1, 2, 4, 8, 16 nodes (each with 1 GPU) show that our newly added collective functionality enables more scalability. One the 16 nodes setting, we speed up training by **5.22x speedup** over the original Spacy-ray, **using a single GPU NULL stream for both computation and communication**. The code has been merged into Ray master.

A WIP experimental multi-stream version that allocates separate streams for NCCL kernels (so the computation and communication is overlapped) is under development, and preliminary results show around **6.82x speedup over spacy-ray**.