1. quadratic; $3x^2$

- Factor a polynomial by grouping when there are pairs of terms that have a common monomial factor.
- It is written as a product of unfactorable polynomials with integer coefficients.
- 4. The Factor Theorem states that a polynomial has a factor x k if and only if f(k) = 0. When trying to factor a polynomial, the Factor Theorem can be used to determine if x k is a factor.
- 5. x(x-6)(x+4)
- **6.** $4k^3(k-5)(k+5)$
- 7. $3p^3(p-8)(p+8)$
- 8. $2m^4(m-8)(m-4)$
- **9.** $q^2(2q-3)(q+6)$
- **10.** $r^4(3r+4)(r-5)$
- **11.** $w^8(5w-2)(2w-3)$

12.
$$v^7(3v+2)(6v+7)$$

13.
$$(x + 4)(x^2 - 4x + 16)$$

14.
$$(y + 8)(y^2 - 8y + 64)$$

15.
$$(g-7)(g^2+7g+49)$$

16.
$$(c-3)(c^2+3c+9)$$

17.
$$3h^6(h-4)(h^2+4h+16)$$

18.
$$9n^3(n-9)(n^2+9n+81)$$

19.
$$2t^4(2t+5)(4t^2-10t+125)$$

20.
$$135z^8(z-2)(z^2+2z+4)$$

- **21.** $x^2 + 9$ is not a factorable binomial because it is not the difference of two squares; $3x^3 + 27x = 3x(x^2 + 9)$
- 22. The polynomial is not completely factored; $x^{9} + 8x^{3} = (x^{3})^{3} + (2x)^{3}$ $= (x^{3} + 2x)[(x^{3})^{2} - (x^{3})(2x) + (2x)^{2}]$ $= (x^{3} + 2x)(x^{6} - 2x^{4} + 4x^{2})$ $= x^{3}(x^{2} + 2)(x^{4} - 2x^{2} + 4)$

23.
$$(y^2 + 6)(y - 5)$$

24.
$$(m^2 + 7)(m - 1)$$

25.
$$(3a^2 + 8)(a + 6)$$

26.
$$(2k^2 + 5)(k - 10)$$

27.
$$(x-2)(x+2)(x-8)$$

28.
$$(z-3)(z+3)(z-5)$$

29.
$$(2q+3)(2q-3)(q-4)$$

30.
$$(4n-1)(4n+1)(n+2)$$

31.
$$(7k^2 + 3)(7k^2 - 3)$$

32.
$$(2m^2-5)(2m^2+5)$$

33.
$$(c^2 + 5)(c^2 + 4)$$

34.
$$(y^2 - 7)(y^2 + 4)$$

35.
$$(4z^2 + 9)(2z + 3)(2z - 3)$$

36.
$$(9a^2 + 16)(3a - 4)(3a + 4)$$

37.
$$3r^2(r^3+5)(r^3-4)$$

38.
$$4n^2(n^5-6)(n^5-2)$$

39. factor

40. not a factor

41. not a factor

42. not a factor

43. factor

44. factor

45.
$$-4$$

$$\begin{bmatrix}
1 & -1 & -20 & 0 \\
-4 & 20 & 0 \\
1 & -5 & 0 & 0
\end{bmatrix}$$

$$g(x) = x(x+4)(x-5)$$

46. 5
$$\begin{vmatrix} 1 & -5 & -9 & 45 \\ 5 & 0 & -45 \\ \hline 1 & 0 & -9 & 0 \end{vmatrix}$$

 $t(x) = (x - 5)(x - 3)(x + 3)$

47. 6 1 -6 0 -8 48
6 0 0 -48
1 0 0 -8 0

$$f(x) = (x - 6)(x - 2)(x^2 + 2x + 4)$$

49.
$$-7$$

$$\begin{array}{c|ccccc}
 & 1 & 0 & -37 & 84 \\
 & & -7 & 49 & -84 \\
\hline
 & 1 & -7 & 12 & 0 \\
 & & r(x) = (x+7)(x-3)(x-4)
\end{array}$$

50.
$$-2$$

$$\begin{array}{c|cccc}
 & 1 & -1 & -24 & -36 \\
 & & -2 & 6 & 36 \\
\hline
 & 1 & -3 & -18 & 0
\end{array}$$

$$h(x) = (x+2)(x-6)(x+3)$$

51. D; The x-intercepts of the graph are 2, 3, and -1.

- **52.** C; The x-intercepts of the graph are 0, -2, -1, and 2.
- **53.** A; The x-intercepts of the graph are -2, -3, and 1.
- **54.** B; The x-intercepts of the graph are 0, 2, 1, and -2.
- 55. The model makes sense for x > 6.5; When factored completely, the volume is V = x(2x 13)(x 3). For all three dimensions of the box to have positive lengths, the value of x must be greater than 6.5.
- **56.** The model makes sense for x > 3; When factored completely, the volume is V = (x 1)(x 3)(3x 5). For all three dimensions of the cage to have positive lengths, the value of x must be greater than 3.
- **57.** $a^4(a+6)(a-5)$; A common monomial can be factored out to obtain a factorable trinomial in quadratic form.
- **58.** $(2m-7)(4m^2+14m+49)$; The difference of two cubes pattern can be used because the expression is of the form a^3-b^3 .

- **59.** (z-3)(z+3)(z-7); Factoring by grouping can be used because the expression contains pairs of monomials that have a common factor. Difference of two squares can be used to factor one of the resulting binomials.
- **60.** $2p^2(p^3-2)(p^3-4)$; A common monomial can be factored out to obtain a factorable trinomial in quadratic form where $u=p^3$.
- **61.** $(4r + 9)(16r^2 36r + 81)$; The sum of two cubes pattern can be used because the expression is of the form $a^3 + b^3$.
- **62.** $5x^3(x-4)(x+2)$; A common monomial can be factored out to obtain a factorable trinomial in quadratic form.
- **63.** $(4n^2 + 1)(2n 1)(2n + 1)$; The difference of two squares pattern can be used to factor the original expression and one of the resulting binomials.
- **64.** $(3k^2 + 1)(3k 8)$; Factoring by grouping can be used because the expression contains pairs of monomials that have a common factor.

65. a. no;
$$7z^4(2z + 3)(z - 2)$$

b. no;
$$n(2-n)(n+6)(3n-11)$$

- **c.** yes
- **66.** 1 million
- **67.** 0.7 million

68. Sample answer:
$$4$$
; $\frac{x^3 - 3x^2 - 4x}{x - 4} = x^2 + x$

- 69. Sample answer: Factor Theorem and synthetic division; Calculations without a calculator are easier with this method because the values are lesser.
- **70.** no; f(x) may be factorable by factors other than x a.

71.
$$k = 22$$

7 | 2 -13 -22 105

14 7 -105

2 1 -15 0

72.
$$y = x(x + 2)(x - 2)$$
; Because 0, -2, and 2 are the *x*-intercepts, $(x - 0)$, $(x + 2)$, and $(x - 2)$ must be factors.

73. a.
$$(c-d)(c+d)(7a+b)$$

b.
$$(x^n - 1)(x^n - 1)$$

c.
$$(a^3 - b^2)(ab + 1)^2$$

74. no; The function shows no x-intercepts. At least one x-intercept is needed to determine the factor used in synthetic division.

75. a. $(x + 3)^2 + y^2 = 5^2$; The center of the circle is (-3, 0) and the radius is 5.

b. $(x-2)^2 + y^2 = 3^2$; The center of the circle is (2,0) and the radius is 3.

- 76. a. If the volume of the missing block is included, the volume of the diagram is a^3 because the length, width, and height are all a. Because the length, width, and height of the missing piece are b, the volume of the missing block is b^3 . Subtracting the volume of the missing block from the entire volume gives $a^3 b^3$.
 - **b.** I: $a^2(a-b)$, II: ab(a-b), III: $b^2(a-b)$
 - **c.** $a^3 b^3 = a^2(a b) + ab(a b) + b^2(a b)$ = $(a - b)(a^2 + ab + b^2)$
- 77. x = 6 and x = -5
- **78.** x = 9 and x = -4
- **79.** $x = \frac{5}{3}$ and x = 2
- **80.** $x = \frac{1}{9}$ and x = 3
- **81.** x = 18 and x = -6
- **82.** $x = 4 \pm 3\sqrt{3}$
- **83.** x = -3 and x = -7

84.
$$x = \frac{-9 \pm \sqrt{85}}{2}$$