
Document status: WIP | In Review | Approved | Retired

This document has been created to focus on, and possibly make a significant iteration on,
the table in the current Platform Maturity Model paper without removing those comments in
the process. Please refer back to the current paper for any additional context:
https://docs.google.com/document/d/1bP8-LQ-d41eIdQB3IC2YsncDhawpFLggql2JxwtE0XI/
edit?usp=drivesdk

Also maybe useful to review is the group brainstorm work here:
https://drive.google.com/drive/folders/17sJUxSGcsCtUBMUdrwXipk9WnUb3_QmI

As you review:

Please keep in mind the following principles that we agreed are important
(this is also open for comment!):

●​ This is a model for platform providers, we are not focusing on other personas
●​ Our target audience is platform providers at the architect/director/lead level. That

means not mid level engineers, nor CTOs of multi national organizations.
●​ Avoid overlapping between characteristics/aspects/rows
●​ Aim for progression not only across the levels (left to right), but also across the

aspects (top to bottom)
●​ Readability / consumability is key, this can relate to the breadth and depth of the

table (keep number of rows/columns low, and number of words per box low)
●​ Level naming is helpful, but keep in mind:

○​ All levels should be reasonable stopping points (therefore positive wording)
○​ Still provide numbering for easy discussion

●​ We value asking questions to clarify the intent of each row
●​ We value clarifying the movement between levels (and not just the levels

themselves)
●​ Focus on outcomes over implementations with the goal of self learning
●​ Platforms are inherently socio-technical and this model should reflect that

Also keep in mind these open questions:

●​ Naming is hard! Keep refining all names.
●​ The platform maturity model is different from the cloud native one, but how do we

intend to fit into that model and what level of alignment is necessary / desirable?

Also, remember that this is the snapshot view and we intend to detail a lot more about each
of these boxes in the published paper. With this in mind, the table should not be confusing
or misleading, but feelings of curiosity or incompleteness is inevitable. The clarifying
column was introduced to try and reduce the concerns, so if you find yourself agreeing in
principle with the intention and the words but wanting to make sure a certain nuance is
included in the description, please hold off on that nuance until the table is settled and we
dive into those details.

And finally, thank you for reviewing!

https://docs.google.com/document/d/1bP8-LQ-d41eIdQB3IC2YsncDhawpFLggql2JxwtE0XI/edit?usp=drivesdk
https://docs.google.com/document/d/1bP8-LQ-d41eIdQB3IC2YsncDhawpFLggql2JxwtE0XI/edit?usp=drivesdk
https://drive.google.com/drive/folders/17sJUxSGcsCtUBMUdrwXipk9WnUb3_QmI

 ...requires gathering and
consolidating to get to...

...requires structuring and
scaling to get to...

...requires collaborating and
adapting to get to...

(this column is only to make review easier and this type of
content will be moved to a more detailed section in the
future)

1: Provisional 2: Operationalized 3: Scaled 4: Optimized

How does platform engineering work get
prioritized and financed? Investment

Should capture the company investment of both time and
money into platform efforts.
Touched on white paper attribute(s): platform as a product

Voluntary or temporary Technical cost center Product budget Profit center

How are users discovering and
integrating with the platform capabilities? Adoption

Should focus on the “optional” principle mentioned in the
white paper. Also that some efforts will be top down and
others bottom up and hopefully we can support both.
Touched on white paper attribute(s): user experience,
documentation and onboarding, optional

Erratic Incentives or Directives Provider driven Community enabled

How do users interact with and consume
platform capabilities? Interface

Focused on the goal of reducing cognitive load on users as
well as making offerings scale better than linearly.
Touched on white paper attribute(s): user experience,
onboarding, self-service, reduced cognitive load

Bespoke processes Supported solutions Self-service solutions API contracts

Once a capability is in use, how is its
lifecycle managed including upgrades
and EOL?

Operations

Should tackle the hard problem of “day 2” for platform
capabilities and how some models leave things like security
patching at risk due to an unclear ownership model.
Touched on white paper attribute(s): platform as a product,
documentation and onboarding, reduced cognitive load for
users, secure by default

By request or requirement Centrally tracked Centralized management Defined responsibility

What is the process for gathering and
incorporating feedback and learning? Measurement

This should focus on the feedback loops that the engineers
enable. It should highlight the socio-technical side of
measurement and not just be about data collection, but also
data use.
Touched on white paper attribute(s): platform as a product,
optional

Ad hoc Consistent collection creating
prioritized tasks

Quantitative and qualitative
driving high level objectives

Multiple tiers influencing all
levels of platform mission

Notes for the detailed sections:

●​ General format:
○​ Each aspect should have a high level summary of its value (small paragraph)
○​ Each aspect should then have details per level
○​ Level details within an aspect should be no more than a few sentences
○​ Level details can include practices / techniques (but not projects / tools)
○​ Level details can refer to external, publicly available resources that reinforce

the details
○​ It is OK (even expected) that some of the things discussed will be only

mentioned and could benefit from a much deeper dive. This is out of scope
for this paper and is an opportunity to add a GitHub Issue to track a deep dive
paper on the subject.

●​ For “adoption”, we may want to add some context around easier ways to get started

during the provisional or operationalized levels. As in, a look at how managing ops
style work at this stage may be easiest (but at the same time not an indication of
maturity to start there). See comment for context: Table deep dive

●​ For interface, be conscious that “solutions” is intentionally vague since we may not

want to indicate that automation is the only way to succeed. Now of course at scaled
speaking to automation will be key, but actually a very well documented process that
doesn’t require any hand holding or human wait times is scaled!

●​ Extensibility, as in how non-platform owners can add to the features of the platform,

should be captured throughout a few different aspects in the detailed section. Namely
it was discussed under both investment and interface (and maybe adoption at the
optimized level?).

○​ The levels we discussed was the difference between closed, limited, plugin or
complete developer ecosystem (with inner or open sourcing)

●​ For “community enabled” under adoption, this can also be described as the flywheel.

Where people are using the platform, contributing back to it, and that drives more
engagement.

○​ A mature organization should do inner-sourcing and have their developers
contribute back to the platform to make it more relatable to their use case.
Plus they also become the advocate/ambassador of the platform. Companies
could have internal ambassador programs at a later stage too.

●​ Under “measurement”, this should raise that different platforms are targeting different

values. One may be developer productivity. And whatever the goals they should be
measured (good luck measuring dev productivity 😂)

○​ Also review the need to focus on the process for feedback collection in the
details section. Please see comment for a lot of ideas: Table deep dive

●​ For “operations” it is a bit harder to parse at the table level and less obvious that it

goes in a progressive way.
○​ This should capture the maintenance of running resources (things actually

provided by the platform). And also running and supporting it.
○​ For “optimized” it is important to address the fact that collaboration is healthy,

but clarity on the responsibility to complete something is clear.
○​ A term to use could be “decentralized” or “distributed” as a way to capture

when a platform exposes responsibility clearly to its users.
○​ For “scaled” should evoke the idea that when the platform has created a

number of instances of a capability (e.g. many databases), they should be

https://docs.google.com/document/d/1yQ165Uh2GjLIXMHEUuxXRfxzSSl-eSgKyWZtBdPsSFo/edit?disco=AAAA2D3a_WI
https://docs.google.com/document/d/1yQ165Uh2GjLIXMHEUuxXRfxzSSl-eSgKyWZtBdPsSFo/edit?disco=AAAA3qBHGAQ

updateable as a collective rather than as independent items. Some
conventionality and consistency around the process.

○​ For “optimized” an implementation should be a shared responsibility model as
used by the cloud providers to indicate who owns what for (in their example)
security.

