Sangola Taluka Shetkari shikshan Prasarak Mandal's

VIDNYAN MAHAVIDYALA, SANGOLA

(Teaching Plan)

Department Of Chemistry

Name of Faculty: Mr. R. S. Gaikwad (Associate Professor)

Academic Year: 2019 – 20 Class: B.Sc. I Semesters: I

Paper No.: II Paper Name: Inorganic chemistry

Sr.No.	Class	Month	Chapter Details
1	B.Sc. I	July	1. Atomic Structure and periodic properties (Contact hrs: 06) 1.1 Atomic Structure a) Shapes of s, p, d orbitals. b) Aufbau and Pauli's exclusion principle, Hund's rule of maximum multiplicity c) General electronic configuration of s and p block elements. 1.2 General Characteristics of s and p block elements w.r.t. Atomic and Ionic radii, Ionization energy, Electron affinity, Electronegativity, Reactivity, Melting and Boiling point
2	B.Sc. I	August	2. Chemical bonding and Ionic Solids (Contact hrs: 08) 2.1 Types of chemical bonding 2.2 Ionic Bonding a) Formation of ionic bond, Energetics of ionic bonding: Ionisation potential, Electron affinity and Lattice energy. b) Characteristics of ionic compounds. c) Born-Haber Cycle for Alkali metal halide (NaCl). d) Fajan's rules. 2.3 Radius ratio and crystal structure.

			a) Definition: Radius ratio (r+ / r-), Coordination
			number, Stoichiometry and unit cell.
			b) Concept and calculation of radius ratio (r+ / r-) for
			ionic solid with octahedral geometry.
			c) Radius ratio effect on geometry.
			d) Crystal structure of NaCl and CsCl w.r.t. unit cell,
			radius ratio, coordination number and stoichiometry.
			4. Covalent bonding: Molecular Orbital Theory
	B.Sc. I	September	(MOT) Approach (Contact hrs: 08)
			4.1 Atomic and Molecular orbitals.
			4.2 L.C.A.O. Principle
3			4.3 Bonding, Antibonding and Nonbonding Molecular
			orbitals.
			4.4 Conditions for successful overlap
			4.5 Different types of overlap (s-s, s-px, px - px and
			py- py or pz- pz)
			4.6 Energy level sequence of molecular orbitals for n =
			1 and $n = 2$
			4.7 M. O. Diagrams for:
			a) Homonuclear diatomic molecule. H ₂ , Li ₂ , Be ₂ , C ₂ ,
			N ₂ and O ₂
			b) Heteronuclear diatomic molecules CO and NO w.r.t.
			bond order stability and magnetic properties.
	B.Sc. I	October	3. Covalent bonding: Valence Bond Theory
4			(VBT) Approach (Contact hrs: 08)
			3.1 Valence Bond Theory: Heitler–London Theory and
			Pauling-Slater Theory
			3.2 Limitations of VBT
			3.3 Need of Hybridization
			3.4 Types of hybridization and shapes of simple
			inorganic molecules: BeCl ₂ , BF ₃ , SiCl ₄ , PCl ₅ ,
			SF6, IF7.
			3.5 Valence Shell Electron Pair Repulsion (VSEPR)
			Theory w.r.t. NH ₃ , H ₂ O, ClF ₃