

SymPy

Google Summer Of Code 2023 Proposal

Improving and Expanding Functionalities of
Control Module

Anurag Bhat
4th April 2023

Personal Details
●​Name : Anurag Bhat

●​Github Profile : faze-geek

●​Email : ​ bhat.1@iitj.ac.in

●​ University : Indian Institute of Technology Jodhpur

●​ Degree : Bachelor of Technology

●​ Major : Computer Science and Engineering

●​Country of Residence : India

●​Timezone : Indian Standard Time (UTC + 5:30)

●​Primary Language : English

Introduction

I am Anurag Bhat, a third-year student of the Indian Institute Of Technology
Jodhpur pursuing a B-Tech in computer science and engineering. IIT-Jodhpur
has one of the most rigorous computer science course curriculums in India.
My hobbies are playing chess, football and competitive coding. I have got a
keen interest in web development over the past year and I enjoy designing
web pages even more than creating them and their functionality.

Through the courses I have undertaken in these 3 years I have dealt with a lot
of software and hardware. I have taken part in several clubs like the
programming and robotics club of my college. I am a part of the student

https://github.com/faze-geek

well-being committee of my college and organize regular events for students,
both related/unrelated to technology. I have good communication skills and
I’m a fluent English speaker. I gel well with the tech community at IIT-J.

Some of the relevant courses I have taken are -

1.​ Introduction to Computer Science
2.​ Engineering Mechanics
3.​ Signals and Systems
4.​ Mathematics 1 - Calculus
5.​ Mathematics 2 - Linear algebra and Differential Equation
6.​ Mathematics For Computing
7.​ Data Structures and Algorithms
8.​ Pattern Recognition in Machine Learning
9.​ Software Engineering

Programming Experience

My earliest experience of programming was in my 9th grade when I was
introduced to JAVA and wrote codes to solve logical problems. In 10th grade, I
had won a national level robotics event ‘Gizmo-Geeks’ in the journey in which I
had learned how an Arduino is coded and used.

I have been programming for the past 3 years. My real interaction with
programming started when I began the ‘Introduction to Computer Science
course in college which was a course based purely on python. After that, I
started competitive coding to get a good grip on data structures and
algorithms. I am now comfortable with coding in
Python, c, c++, HTML, CSS, javascript(for web development) and Verilog(for
hardware breadboard coding).I have also been interested in physics and
physical materials. I have undertaken a project using Data Analysis to predict
the fatigue life of Aerospace ball bearings.

I use a Windows 10 operating system and use Visual Studio Code as my
primary editor. It is open-source and easy to use. It also has an IntelliSense
extension which makes it very user-friendly and allows me to write code very
fluently.
I like python as a language because of its extensive pre-defined functions and
various libraries which makes problem solving easier. It is also simple to
understand because of its similarity to English itself.

I have been using git and GitHub regularly for various things for the past 1
year now. Now I am quite familiar with GitHub workflow and git commands.

Now coming to SymPy the feature which impressed me the most when I first
came across it was pprint() or pretty print. It is something I never imagined
would be present in SymPy and randomly came across it when I approached
one of my initial issues. Look how easy it is to visualize things with and
without pprint().

>>> M=Symbol('M',integer = true)
>>> e = -M/(sqrt(3)/2 - S(1)/2) + M + sqrt(3)*M
>>> e

-M/(-1/2 + sqrt(3)/2) + M + sqrt(3)*M

>>> pprint(e)

 M
- ──────── + M + √3⋅M
 1 √3
 - ─ + ──
 2 2

Contributions To SymPy

I started using SymPy in October 2021 and made my first contribution to the
main repository in December. I have been consistently contributing to the
organization since then. I plan to be a long-term contributor and will continue to
improve this software even after this program is finished.

Pull Requests

(Merged) #22640 - Added Tests in Limits.py for issue which has been fixed
in Master
(Merged) #22647 - Solves issue of ignoring evaluate=False condition
(Merged) #22670 - Modified the as_content_primitive method in
core/power.py to deal with expression involving 0 as base
(Merged) #22681 - Appropriate Tests Added For residue() Function Which
Has Been Fixed On Master
(Merged) #22927 - integrals - Added test for integrate() function which has
been fixed on master
(Merged) #23033 - vector : Scalar condition of vectors made False
(Merged) #22770 - Corrected prior form leading to dead code in
sympy.polys.polyroots.roots() function
(Merged) #23074 - physics : Improved Bode's phase and magnitude plots
(Merged) #23199 - calculus : Added condition to improve is-convex results
(Merged) #22999 - Fixes results of evalf() function based on precision
(Merged) #22827 - physics : completed list of non-SI units -accepted by SI
system but missing in SymPy
(Merged) #22969 - physics : Added refractive index in Gaussian Beam
Parameters and refactored code
(Merged) #23141 - integrals : Fixed polytope_integrate for max_degree
inputs
(Merged) #23296 - physics units : Fixes wrong dimension calculation for
functions

https://github.com/sympy/sympy/pull/22640
https://github.com/sympy/sympy/pull/22647
https://github.com/sympy/sympy/pull/22670
https://github.com/sympy/sympy/pull/22681
https://github.com/sympy/sympy/pull/22927
https://github.com/sympy/sympy/pull/23033
https://github.com/sympy/sympy/pull/22770
https://github.com/sympy/sympy/pull/23074
https://github.com/sympy/sympy/pull/23199
https://github.com/sympy/sympy/pull/22999
https://github.com/sympy/sympy/pull/22827
https://github.com/sympy/sympy/pull/22969
https://github.com/sympy/sympy/pull/23141
https://github.com/sympy/sympy/pull/23296

(Unmerged) #22688 - Added Essential Information In .evaluate() Doc-string
Regarding Use Of Declaring Real Symbols
(Unmerged) #22712 - Fixed limit(x**n, x, oo) Earlier Giving -oo As Answer
Irrespective Of Odd/Even n
(Unmerged) #22746 - Moved core/mod.py routines to
functions/elementary/integers.py
(Unmerged) #22790 - Added a class method 'nearest_points()' to calculate
distance between two lines in 3D.
(Unmerged) #22809 - Made changes for better user-interpretation of series
which are demonstrably divergent
(Unmerged) #22869 - combinatorial: Added code for Padovan number
(Unmerged) #22889 - functions : Improved floor and ceiling results
(Unmerged) #23068 - physics : Added solve_vector function in physics
vector

Issues

(Closed) #22819 - Non-SI units mentioned in the SI missing/incomplete in
SymPy
(Open) #22935 - Periodicity of trigonometric expression incorrect .
(Open) #22986 - limit(acosh(1 + 1/x)*sqrt(x), x, oo) is evaluated incorrectly
(Open) #23247 - physics : Non-polynomials accepted as num/den inputs
for TransferFunction

Other than these I have reviewed and brainstormed ideas on a few issues. I have
tried helping newcomers on the Gitter channel so that they can contribute to
SymPy.

Note: I believe that I will continue to contribute even during the proposal period so
here is the link to my updated work.

https://github.com/sympy/sympy/pull/22688
https://github.com/sympy/sympy/pull/22712
https://github.com/sympy/sympy/pull/22746
https://github.com/sympy/sympy/pull/22790
https://github.com/sympy/sympy/pull/22809
https://github.com/sympy/sympy/pull/22869
https://github.com/sympy/sympy/pull/22889
https://github.com/sympy/sympy/pull/23068
https://github.com/sympy/sympy/issues/22819
https://github.com/sympy/sympy/issues/22935
https://github.com/sympy/sympy/issues/22986
https://github.com/sympy/sympy/issues/23247
https://github.com/sympy/sympy/pulls/faze-geek

The Project

I would like to describe the project from this point. I hope that I will be able to
explain it appropriately and expect improvements in content as well as structure
once SymPy mentors go through it. This is intended to be a 175 hours project.

Overview

The control module was added in Gsoc projects to SymPy by Naman Gera in
2020 and improved by Akshansh Bhatt in 2021. Their work is truly commendable
but SymPy is far from the powerful CST modules of Wolfram-Alpha or MATLAB
.Till now a lot of basic functionality has been added which is common for every
control system toolkit. An important guide regarding the value a control package
could add to SymPy is this discussion.

The advantage this module has is that it can utilize SymPy’s symbolic methods
instead of numerical methods which can tend to derive slower results when large
number systems are involved.

Currently this package has a good scope of improvement. Some Pull requests
were made earlier without discussion, to add control systems with nice
functionalities (#9916 and #17866) whose ideas are still valuable. Some great
entry points for work in this module are Naman’s comment on #19761 and
Akshansh’s GSoC Report. While going through the work proposed/done by
Naman and Akshansh I found some chunks left whose completion could be the
starting points of my work. It is also tempting to look for ideas into older
documented open source repositories who develop control packages ,namely
python-control and harold.

Motivation

I feel that I am a good candidate for this project because I have the theoretical
knowledge to complete this project .In my 1st year I have done the basics of

https://github.com/namannimmo10
https://github.com/akshanshbhatt
https://www.wolframalpha.com/
https://matlab.mathworks.com/
https://groups.google.com/g/sympy/c/wX9BPLcJu50/m/wwxjlZTLAQAJ
https://github.com/sympy/sympy/pull/9916
https://github.com/sympy/sympy/pull/17866
https://github.com/sympy/sympy/pull/19761#issuecomment-803539612
https://github.com/akshanshbhatt/GSoC-2021-Final-Report
https://python-control.readthedocs.io/en/0.9.0/
https://github.com/ilayn/harold

Control Systems, namely ‘ Electrical Engineering Circuit Lab ’ and ‘ Signals And
Systems ’. I have done an intermediate level python project in the above course
where the problem statement was to design two systems from scratch - One that
first performs deblurring and then denoising VS. One that first performs denoising
and then deblurring. We had to report and compare the performance of both
systems for the same signals.
Link-
https://drive.google.com/file/d/1iZDy8O7V5Hi703P7BPFScx0bAFgrM6na/view?
usp=sharing
I have spent a decent amount of time contributing to SymPy, going through
online documentation and will be thoroughly understanding the code base
relevant to this project .

Progress In Past Years

Here are some major goals accomplished by Naman Gera and Akshansh Bhatt in
the last two years.

1.​ Adding TransferFunction, Series, Parallel, and Feedback classes, with
basic functionality, unit tests, and proper documentation.

2.​ Adding TransferFunctionMatrix class, with basic functionality, unit tests,
and proper documentation.

3.​ Adding pole_zero & bode_plot using SymPy’s native plotting module along
with proper documentation.

A few things which were proposed but not implemented in the last two years are -

1.​ Adding a StateSpace class, with basic functionality, unit tests, and proper
documentation.

2.​ Adding root_locus & nyquist_plot using SymPy’s plotting module.
3.​ Adding extensive examples/illustrations in documentation from MATLAB

or certain college course textbooks.

I believe that the work done in the last 2 years is great and deserves applause,
but it is incomplete and has some obvious holes. I would like to complete all the

https://drive.google.com/file/d/1iZDy8O7V5Hi703P7BPFScx0bAFgrM6na/view?usp=sharing
https://drive.google.com/file/d/1iZDy8O7V5Hi703P7BPFScx0bAFgrM6na/view?usp=sharing

tasks I mention below so that SymPy has a well-furnished control module by the
end of this summer.

Major Goals -

These are the tasks I have planned throughout the GSoC period. Their
implementations will further be equally divided into 4 phases. The priority
and scope of these goals can be flexible and changed by discussion with
mentors in the future.

1.​ Completion of work remaining from the past Gsoc period is what I
consider to be the goal of highest priority. I would not like to start new
work, while there is already pending work to be done .So PR #22124 will
be completed with more examples from documentation of MATLAB and
python-control. I also have a course textbook for my control-systems
course and can always refer to that for illustrations. Another pending
thing I could observe which Akshansh had attempted but could not get
merged due to some performance issues is the root_locus_plot. The
comments of his PR #21763 also suggests the addition of nyquist_plot
and nichols_plot along with it .

2.​ The next goal I have in mind is to fix bugs , make improvements in
‘TransferFunction’ / ‘TransferFunctionMatrix’ API and add more
functionality to the ‘TransferFunction’ class. These are the issues and
potential improvements I discovered while going through the code and
online documentation. There are a bunch of features I plan to add
,which I got to know of while comparing SymPy with the CST package of
MATLAB. All these topics will be discussed in detail with the mentors
before I work on them.

3.​ Introducing the ‘StateSpace’ model for effectively representing a State
Space system symbolically. It will be important to add all the relevant
attributes and methods. Polishing documentation and code of #17866
would help the progress of this particular task. Implementing a

https://github.com/sympy/sympy/pull/22124
https://github.com/sympy/sympy/pull/21763
https://github.com/sympy/sympy/pull/17866

Discrete-time ‘TransferFunction’ model. Discussing the API and making
things compatible with the current implementation is a challenging task
as suggested in Akshansh’s Gsoc 2021 report. It has already been a
component of the MATLAB CST package from the beginning. As a
control module, we have to realize that all signals in practical real life
use are always discrete in nature. This is my motivation for adding the
Discrete-time ‘TransferFunction’ model to SymPy so that users can have
extensive use of SymPy’s CST package in their projects.

Phases

A brief look at tasks I would aim to complete in each of the 4 phases -

Phase 1 :
In this phase, I will focus on my first goal. Completion of previous work, regarding
the addition of more illustrations and plots.

Phase 2 :
Improvements in the current API, along with some important functionalities being
added to ‘TransferFunction’.I expect that my second goal gets completed in this
phase.

Phase 3 :
A chunk of my third goal should be covered in this phase. I will be starting the
new implementations I intend to add to SymPy’s control package, namely the
StateSpace system. Along with this concrete discussions for adding the
Discrete-time TransferFunction model will be done with mentors.

Phase 4 :
This phase is for the completion of the third goal. A basic discrete-time model
should be implemented.

Phases In Detail

Ideas and work of each phase will be explained in detail below.
These are the ideas that I have accumulated by observing work done in
previous years and checking out other CST frameworks. Implementation of
all ideas would take extensive discussions with mentors along with a
bunch of new unit tests to check their functioning.

Phase 1 -

Phase 1 will be primarily focused on my 1st goal .I will start it with
completion of #22124 (Add examples in control module docs) . A few
examples are already present and I will add more of them . For the online
docs , I’ll refer to examples of MATLAB and Python-control . The course
textbook of my university has tons of solved examples which can be added
after discussion.

Plotting - Visualization is a very important aspect in control systems.
SymPy has a plotting module which can be used for the backend.I will be
adding some popular plots to SymPy’s control plots . These are namely the
root_locus_plot, nyquist plot and the nichols plot . SymPy’s plotting module
allows dynamic positioning of coordinates (move the cursor to get values
of points on the plot) which will be an added advantage .

Root Locus Plot -

This is a plot which gives information about the stability of a transfer
function. It is basically an extension of the pole zero plot .The difference is
that , in the root locus plot the poles and zeros are connected by various
curves (even asymptotes meeting particular lines at infinity) depending on

https://github.com/sympy/sympy/pull/22124

the relative stability. Examples of construction of the plot are present in this
document (taken from Akshansh Bhatt’s proposal).
This plot depends on -

1.​ The poles and zeros
2.​ The number of poles and zeros
3.​ Centroid of poles and zeros
4.​ The angle of asymptotes
5.​ Breaking points

An example of the root locus plot

MATLAB -

sys = tf([2 5 1],[1 2 3]);
rlocus(sys)

SymPy -

>>> tf = TransferFunction(2*s**2 + 5*s + 1,s**2 + 2*s + 3,s)
>>> root_locus_plot(tf)

http://engineering.nyu.edu/mechatronics/Control_Lab/Criag/Craig_RPI/2001/RLocus_Analysis_Design.pdf
http://engineering.nyu.edu/mechatronics/Control_Lab/Criag/Craig_RPI/2001/RLocus_Analysis_Design.pdf

SymPy uses matplotlib as a backend which would need some modification
to construct these plots .
There has been some work done on this plot by Akshansh but it needs
effective sampling .This comment on PR #21763 explains the current state
of sampling and this suggestion by @oscarbenjamin needs to be
addressed .

Nichols Chart -

Nichols chart is a plot of the frequency response of a dynamic system
model. The plot displays the magnitude (in dB) and phase (in degrees) of
the system response as a function of frequency.
Here the frequencies in consideration will be decided by system dynamics
itself. There can be input arguments for min_freq and max_freq when the
user wants to focus on a range of frequencies(also an option in MATLAB
and python control).

https://github.com/sympy/sympy/pull/21763#discussion_r675772024
https://github.com/sympy/sympy/pull/21763
https://github.com/sympy/sympy/pull/21763#discussion_r675882746
https://github.com/oscarbenjamin

An example of the nichols chart -
>>> tf = TransferFunction(2*s**2 + 5*s + 1,s**2 + 2*s + 3,s)
>>> nichols_plot(tf)

Nyquist Plot -

The Nyquist plot is a graph of the frequency response of a dynamic system
model. The plot displays real and imaginary parts of the system response
as a function of frequency. It has a contour composed of both positive and
negative frequencies. The plot also shows arrows to indicate the direction
of increasing frequency for each branch.

Here the frequencies in consideration will be decided by system dynamics
itself .There can be input arguments for min_freq and max_freq when the
user wants to focus on a range of frequencies(also an option in MATLAB
and python control). A helper function will also be needed to draw arrows
in particular directions. A full video tutorial of rules for plotting and deriving

https://in.mathworks.com/help/control/ug/dynamic-system-models.html

the Nyquist Stability Criterion from this playlist . Nyquist stability criterion
is a set of rules to determine stability of a dynamical system which go hand
in hand with the plot and can be analyzed with ease.

For implementation I will refer to python-control ‘s nyquist plot. I will be

An example of the nyquist plot -

>>> tf = TransferFunction(2*s**2 + 5*s + 1,s**2 + 2*s + 3,s)
>>> nyquist_plot(tf)

Phase 2 -

https://www.youtube.com/playlist?list=PLgwJf8NK-2e6Gf4HUQoBarCU1dSg3suGZ
https://www.electrical4u.com/nyquist-stability-criterion/
https://github.com/python-control/python-control/tree/master/control

This phase is relevant to the work I have suggested in my second goal.
Some bugs need to be fixed and along with that minor changes can be
made to the transfer function and transfer function matrix API. Some of
these were pointed out in the previous year’s proposal but I believe are not
fixed yet. Besides these improvements, I will be adding some handy
functionalities to the transfer function model which are a part of MATLAB. I
have already started comparing SymPy documentation with MATLAB
documentation for the control module and I have observed a bunch of
useful functions that will benefit SymPy.

1.​ I have spotted a bug and raised an issue #23247 .Transfer
function should not be able to take non-polynomial expressions
as input (eg - sin(x) , 2^(x)). The fix is simple and this deserves
an error message as it does in MATLAB -

>>> from sympy.physics.control import TransferFunction
>>> x = Symbol('x')
>>> t = TransferFunction(x**2,sin(x),x)

#Clearly not a polynomial in denom

I have already come up with a fix in a branch locally -

+ if (num.is_polynomial(var) is not True or

den.is_polynomial(var) is not True):

+ raise TypeError("Numerator and Denominator of

TransferFunction must be a polynomial")

But this fix cannot be made instantly .I have observed that
previous contributors to test_lti.py have not considered this as

https://github.com/sympy/sympy/issues/23247

a mistake and added examples with non polynomial terms
(about 5-6) for eg -

tf14 = TransferFunction(a0*s**0.5 + a2*s**0.6 - a1,

a1*p**(-8.7), s)

where s is raised to .5,hence the numerator is not a polynomial.

Therefore I would have to change those examples which will
not be a tough task.

Another direct bug I have spotted is that transfer functions are
not treated like basic rational functions in terms of division
unlike in MATLAB and python-control.

MATLAB

>>tf1 = tf([2],[1,1])
>>tf2 = tf([1],[1,1])
>>tf2/tf1

ans =

 s + 1

 2 s + 2

SymPy

>>> tf1 = TransferFunction(2,s + 1, s)
>>> tf2 = TransferFunction(1,s + 1, s)
>>> tf1/tf2
ValueError: TransferFunction cannot be divided by <class
'sympy.physics.control.lti.TransferFunction'>.

This change can be made easily with modifications in the
__truediv__() private function.

2.​ To improve the API of ‘TransferFunctionMatrix’ Akshansh had
modified lti.py , he intended to make ImmutableDenseMatrix
from sympy.matrices module as the base class .
ImmutableDenseMatrix supports .subs() which is a nice
functionality for transfer function matrix to have -

>>> M = ImmutableDenseMatrix([(s**2 + 2*s + 1)/(s +
1),(s**2 - 9)/(s + 3)])
>>> pprint(M.subs({s:2}))

⎡3 ⎤
⎢ ⎥
⎣-1⎦

But this is not possible with ‘TransferFunction’ /
‘TransferFunctionMatrix’ as of now .

SymPy being a symbolic library ,subs() and rewrite() are useful
properties. ‘TransferFunction’ is basically a rational function, so
it will be a good addition if users can access these methods.
‘TransferFunction’ inherits ‘Basic’, so this can be done.
‘TransferFunctionMatrix’ also as mentioned above lacks these
properties.

Current -

>>> tf = TransferFunction(s**2 + 2*s + 1,s + 1,s)
>>> pprint(tf.subs({s:2}))
 2
s + 2⋅s + 1
────────────
 s + 1

Expected Improvement -

>>> pprint(tf.subs({s:2}))
3

3.​ Restructuring some parts of the code , I feel some functions are
unutilized .Minor functionalities for ‘TransferFunction' that are a
part of other CST frameworks like MATLAB can be made a part
of SymPy too.As mentioned above I will be comparing MATLAB
documentation with SymPy documentation and note if they
would be useful for SymPy users.

Examples -

●​ bandwidth(system) - First frequency where gain drops by 3dB
of DC value. It provides relevant information in linear analysis
of the function.
bandwidth(system, drop) - To allow variable drop below 3db.

Expected -

>> sys = tf(s, s + 1, s);
>> bandwidth(sys)

0.9976
#This result shows that the gain of sys drops to 3
dB below its DC value at around 1 rad/s.

●​ margin(system) - Gives gain-margin and phase-margin which
are used to visualize marginal stability that SymPy’s
‘is_stable()’ gives no information about.

Gain margin : The greater the Gain Margin (GM), the greater
the stability of the system. The gain margin refers to the
amount of gain, which can be increased or decreased without

making the system unstable. It is usually expressed as a
magnitude in dB.

Formula -

GM = 0 - gain (dB)

Phase margin : The greater the Phase Margin (PM), the
greater will be the stability of the system. The phase margin
refers to the amount of phase, which can be increased or
decreased without making the system unstable. It is usually
expressed as a phase in degrees.

Formula -

 PM = phase_lag -(-180 deg)
Negative PM means an unstable system.

Expected -

>> sys = tf(1,[1 2 1 0])
>> margin(sys)
{Gain margin : (6.02 dB), Phase margin : (21.4 deg)}

A margin_plot(sys) can also be added which is present in

MATLAB too .It is basically the bode plot but with dotted lines to

visualize the phase and gain margins .This can be easily handled

since bode_plot() is already implemented with all possibilities in

consideration.

​ ​ ​ A sample is shown below -

●​ Use Of Minimal Realization(Not utilized in SymPy)

‘minreal’ is a MATLAB function that performs pole-zero
cancellation of a transfer function. Although SymPy has
‘simplify’ / ‘cancel’ methods which the user can apply
manually. But in some instances, it is expected that the result
is in a minimal format.
Consider a feedback system (MATLAB example)-

MATLAB

K = 2;
G = tf([1 2],[1 .5 3])

H = feedback(G,K)

H

s + 2

 s^2 + 2.5 s + 7

SymPy

>>> tf1 = TransferFunction(2, 1, s)

>>> tf2 = TransferFunction(s + 2, s**2 + S(1/2)*s +

3, s)

>>> c = Feedback(tf2, tf1)

>>> pprint(c.doit())

 2

 (s + 2) ⋅ ⎝s + 0.5⋅s + 3⎠

─────────────────────────────

 2 2

⎝s + 0.5⋅s + 3⎠ ⋅ ⎝s + 2.5⋅s + 7⎠

As you can see here, the results are different . Here actually

poles of numerator have been added both in the numerator

and in the denominator which is not a good practice /

unnecessary for user visualization, as explained by this link.

This happens in many functions where MATLAB gives the

minimal result but SymPy does not.

4.​ Possible improvements in ‘TransferFunction’ or
‘TransferFunctionMatrix’ API -

●​ Making input ‘var’ in ‘TransferFunction’ optional instead of
compulsory. Users will only have to specify the variable
when there is a conflict. This may be a total change in
SymPy convention but is already followed in Wolfram
Mathematica and MATLAB.

https://in.mathworks.com/help/control/ug/using-feedback-to-close-feedback-loops.html
https://reference.wolfram.com/language/ref/TransferFunctionModel.html
https://reference.wolfram.com/language/ref/TransferFunctionModel.html
https://www.mathworks.com/help/control/ref/tf.html

Current -

>>> tf = TransferFunction(s**2 + 2*s + 1,s + 1)

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: __new__() missing 1 required
positional argument: 'var'

Expected -

>>> tf = TransferFunction(s**2 + 2*s + 1,s + 1)
>>> pprint(tf)
 2
s + 2⋅s + 1
────────────
 s + 1

When there are multiple variables in num/den expressions
an error can be raised

>>> tf = TransferFunction(s**2 + 2*s + 1, p + 1)
ValueError: There is a conflict detected for the
value of 'var', please specify it manually.

Making the ‘var’ optional would also enable us to input an
expression directly . For example -

>>> tf = TransferFunction((2*s + 3)/(9*s**3 +
3*s**2 + s))

●​ Allowing a MATLAB-like input scheme where users just have
to input coefficients of particular degrees of the Transfer

Function in order.I personally feel it is an efficient method of
input and will itself eliminate many input issues, one of
them pointed above as use of non-polynomials.

Expected -

>>> numerator = 1;
>>> denominator = [2,3,4];

>>> tf = TransferFunction(numerator,denominator)

>>> pprint(tf)

 1

──────────────

 2

2⋅s + 3⋅s + 4

●​ Allowing a declared rational expression to be taken as input

in ‘TransferFunctionMatrix’ to reduce size -

Current -

>>> tf1 = TransferFunction(1,1+s,s)
>>> tf2 = TransferFunction(2,2+s,s)
>>> t = TransferFunctionMatrix([[tf1,
tf2],[-tf1,-tf2]])

Expected -

>>> exp1 = 1/(1+s)
>>> exp2 = 2/(2+s)
>>> t = TransferFunctionMatrix([[exp1,
exp2],[-exp1,-exp2]])

●​ Other possible improvements I can come up with, are
related to how polynomials are returned in the
‘TransferFunction’ model. In many instances, I have
observed that polynomials are not returned in their
canonical format. Polynomials in the numerator and
denominator must always be in their expanded format as in
MATLAB. Even if the user inputs a factorized format, there
must be a flag, or else the polynomials should always be
expanded.

●​ Adding support for ‘TransferFunctionMatrix’ objects to be
instantiated by passing a list of numerators and a common
denominator. This can be an alternative way of object
creation.(Referenced directly from Akshansh’s proposal)

This makes the API easier for the user . This feature is
already present in MATLAB and Wolfram Mathemica .

5.​ Another questionable issue that is faced are the printing issues
with LaTeX and pprint related to Series / Parallel objects (
depends on the example and the terminal too) . I will be trying
out many examples in Series / Parallel object creation and
follow by printing them in both formats to notice potential
errors.

These are the changes I would like to make. I believe that it will improve the
control module in various ways. Firstly it will become more accessible and
easier for users. Secondly, these changes will improve the time and space
complexities of many evaluations, speed has always been a priority in
SymPy!

Required unit tests will be added in the last week of this phase.

Phase 3 -

Phase 3 will be about introducing the ‘StateSpace’ model for effectively
representing a State Space system symbolically.
We will use the StateSpace class to represent a linear, time-invariant (LTI)
control system.

x'(t) = A * x(t) + B * u(t); x in R^n , u in R^k
y(t) = C * x(t) + D * u(t); y in R^m

Here in this equation, u(t) is the input signal, and y(t) is the output signal.
x(t) is the state of the system. The actual equation has A(t), B(t), C(t) and
D(t), but in linear, time-invariant systems, all those four matrices are
constant. Here A, B, C and D will be sympy matrices.

Implementation will take place in the following steps. They have been
derived from @sylee957 ‘s comment on #18460 .

1.​ Define the constructor with ‘__new__’ rather than ‘__init__’, such that it
‘sympifies’ the arguments .

StateSpaceModel uses ‘Basic.__new__(cls, A, B, C, D)’ signature
where A, B, C, D are matrices .An optional change can be anchoring
the symbol ‘s’ for case of symbolic coefficients as done in
TransferFunctionModel .

2.​ ‘__eq__’ doesn't have to be defined if it inherits Basic.

3.​ Define behavior of ‘__neg__’ for StateSpace.

https://github.com/sympy/sympy/issues/18460#issuecomment-580730059
https://github.com/sympy/sympy/issues/18460

def __neg__(self):# Negates a state space system.

 return StateSpaceModel(self.args[0], self.args[1],
-self.args[2], -self.args[3])

4.​ Adding Series and Parallel support for StateSpace systems.

def series(self, other):# Returns the series interconnection of
the system and another system (other).

 # The implementation in #17866 can be improved further by
using `.args` instead of `.represent` and much more.

5.​ Interconversion between ‘StateSpaceModel’ and
‘TransferFunctionModel’ .For this I’ll refer to this pdf, this wiki, and
this lecture slide (resources shared by Akshansh Bhatt).

These 2 will be implemented earlier then it will simply use ‘.rewrite()’
.

●​ ‘_eval_rewrite_as_StateSpaceModel(
TransferFunctionModel)’

●​ ‘_eval_rewrite_as_TransferFunctionModel(
StateSpaceModel)’

def _eval_rewrite_as_TransferFunctionModel(self):

 # After this, model interconversion would simply be
`.rewrite(TransferFunctionModel)`.

6.​ Observability is a property that indicates that each state of the
system is observable from the output, meaning that the value of each
state may be deduced .

These methods will be added in the StateSpaceModel for checking
various aspects of observability.

http://karimpor.profcms.um.ac.ir/imagesm/354/stories/mul_con/multivariable4_polezero.pdf
https://lpsa.swarthmore.edu/Representations/SysRepTransformations/TF2SS.html
https://nptel.ac.in/content/storage2/courses/101108047/module4/Lecture%2010.pdf
https://en.wikipedia.org/wiki/Observability

●​ is_observable()
●​ Observability_matrix()
●​ observable_subspace()

def observability_matrix(self):

Description can be found here:
https://in.mathworks.com/help/control/ref/obsv.html#f3-209625
The matrix would be of np rows and n columns.

def observable_subspace(self):

The observable subspace only depends on A and C. The
observable subspace of lti system is equal to the image of its
observability matrix.

 return self.observability_matrix().columnspace()

def is_observable(self):

Returns a Boolean whether or not the system would be
observable. If the observability matrix is non-singular, then the
system would be observable.

According to theory, we can just find the determinant.If the
det is 0, then the system is not observable else it is
observable..

7.​ is_controlable() can also be added to check for controllability of
the system.

https://in.mathworks.com/help/control/ref/obsv.html#f3-209625
https://en.wikipedia.org/wiki/Controllability

8.​ Move ‘__str__’, ‘__repr__’, ‘_repr_latex_’ to ‘_print_TransferFunctionModel’
and ‘_print_StateSpaceModel’ in StrPrinter, LatexPrinter .

9.​ Add basic unit tests along the way to check functioning. High level
documentation (illustrations / examples) from MATLAB could be
adjusted in the next phase.

Phase 4 -

The start of this phase will be dedicated to some examples for the
‘StateSpaceModel’ from some reference books, even preferably the course
textbook of my university.
Then my focus will be on implementing a Discrete-Time ‘TransferFunction’
model.
An optional input parameter ‘ts’ - sample time will have to be introduced so
that other parts of the code base like already written tests are not affected.

ts = 0 (by default) #indicating continuous time model
ts = True #discrete time model but with unknown / unassigned sample
time
ts = finite rational #discrete time model with known sample time

I plan to make this optional because systems must have compatible
timebases in order to be combined. A discrete time system with unspecified
sampling time (ts = True) can be combined with a system having a specified
sampling time, the result will be a discrete time system with the sample time
of the latter system. The __add__() , __sub__() functions will be modified to
conduct this.

Accompanied by parameters and related attributes -

>>> tf = TransferFunction(s**2 + 2*s + 1, p + 1, 2)
>>> tf.ts

2
>>> tf.sfreq() #Sampling frequency which is 2*pi/(ts)
(pi)

Followed by 2 state check functions -

●​ is_ctime() #Continuous time model
●​ is_dtime() #Discrete time model

I also intend to add functionalities after discussions with mentors, some basic
ones since I aim this to be just an introduction to the discrete-time model
framework.
There are a lot of potential functions which are useful and I would add, so
pardon me if I forget to mention some of them here .

●​ is_stable()
Addition to function, already present for continuous time .
True when poles lie within an open unit disk or absolute
magnitude of poles of a system is < 1.

Example-

>>> tf = TransferFunction(2*s,4*s**3 + 3*s -1,0.1,s)
>>> tf.is_stable()
True

Sampling will also be introduced which is a very helpful operation in practical
scenarios. Through sampling continuous time models can be converted into
discrete time models .It is an important addition, since all the CST packages
which I explored while writing this proposal had this method.

Sampling is performed with some assumptions which the user will have to
mention .These assumptions are explained in detail in this MATLAB link.
The expected api would look like this-

https://in.mathworks.com/help/control/ug/continuous-discrete-conversion-methods.html#mw_b4f814d7-9f4c-4dec-a74d-ab4d54f2c93d

>>> from sympy.physics.control import TransferFunction
>>> s = Symbol('s')
>>> tf = TransferFunction(1,1+s,s)
>>> tfd = c2d(tf, ts = 0.1, assumption = 'zero')

 0.09516

 z - 0.9048

Sample time: 0.1 seconds
Discrete-time transfer function.

There are many possible assumptions but the basic ones will be
added.
zero-order hold - You want an exact discretization in the time
domain for staircase inputs.
first-order hold - You want an exact discretization in the time
domain for piecewise linear inputs.

New set of documentation containing unit tests will be added for the discrete
time model . SymPy already has a great set of unit tests in the continuous
time model, so refactoring and creating new tests out of them should not be a
tough task.

Timeline -
For an intended 175 hours project.

Community Bonding Period

●​ Discuss proposal and relevant points with mentors .
●​ Learn and test stuff like ‘sympy.matrices’, ‘sympy.plotting’ which I

need to be familiar with for the project.
●​ Finish a couple of unmerged pull requests opened by me.
●​ Set up a blog for weekly updates .Probably on wordpress.

Week 1,2,3

●​ Start with Phase 1 coding work.
●​ Complete remaining pull requests from previous GSoC years.This

includes adding documentation and plots.
●​ Raising issues regularly which my pull requests intend to solve so

that the community is aware of the improvements.

Week 4,5,6

●​ Start with Phase 2 coding work.
●​ Revamping ‘TransferFunction’ / ‘TransferFunctionMatrix’ in

sympy.physics.control.lti .Fixing the issues raised in earlier weeks
along with new implementations.

●​ Relevant documentation will be added.

Week 7,8,9

●​ Start with Phase 3 coding work.
●​ Adding ‘StateSpaceModel’ and all it’s functionalities mentioned

above.
●​ Since adding this class is a major task ,I’ll adjust documentation in

the upcoming phase.

Week 10,11,12

●​ Start with Phase 4 coding work.
●​ Make sure that everything added / changed in the previous weeks is

tested and documentation is tip top.
●​ Adding a basic discrete time ‘TransferFunction’ model ,incorporating it

with the continuous time ‘TransferFunction’ model.

Week 13

●​ Make sure all pull requests I have opened are successful.
●​ Submit final evaluations.

Post Google Summer Of Code

1.​ After completion of the project, my initial plan is to complete
implementations where I will get stuck in the coding period.

2.​ I will look forward to being a regular contributor and code reviewer for new
contributors. I consider GSOC as my work for SymPy in the short term but
what I consider more important is my contribution to SymPy in the long
term which I believe is to get new contributors and guide them so that the
community always grows.

3.​ One particular step I had in mind was to document a video of SymPy setup
(specially for Windows OS) which many new contributors face and failing
there instantly demotivates them. I myself faced many issues while setting
it up locally. Making some nice SymPy tutorials on platforms like youtube
will also be a part of my stretch work.

Time Commitments (During Gsoc)

1.​ I have no major commitments this summer and majority of my time
will be spent in GSoC. I can positively say that daily 5-6 hours
 of my time will be dedicated to SymPy.

2.​ If I decide to have any change in my plans, it will be communicated to the
mentors on a prior basis.

References

1.​ Akshansh Bhatt’s proposal

2.​ Naman Gera’s proposal

3.​ Good previous year proposals at SymPy Wiki

4.​ MATLAB control documentation

5.​ SymPy Github page for issues/pull requests/comments

Acknowledgements & Appreciation

I started my journey in SymPy during Oct 2021 when I had no idea about what
open source development means, no knowledge of any version control tools and
their use. I have learned a lot in these past months going from communication to
technical writing to developing top quality code content to sharpening my
math/physics skills. I owe the whole SymPy community for that.

I want to acknowledge some members of the organization who have helped me
immensely.

@oscarbenjamin (Oscar Benjamin)
@smichr (Christopher Smith)
@moorepants (Jason Moore)
@oscargus (Oscar Gustafsson)

Thank-you for going through this proposal.

Regards,
Anurag Bhat.

https://github.com/sympy/sympy/wiki
https://in.mathworks.com/help/control/ref/tf.html
https://github.com/sympy/sympy
https://github.com/oscarbenjamin
https://github.com/smichr
https://github.com/moorepants
https://github.com/oscargus

	
	Introduction

