

Linear Algebra MAT313 Fall 2022

Professor Sormani

Lesson 15

Proofs with Matrices

Don't forget your team challenge!

Look for 313F22-Oct-Team in googledocs and check your teammates work and add a step of the proof!

You will cut and paste the photos of your notes and completed classwork in a googledoc entitled:

MAT313F22-lesson15-last-first

and share editing of that document with me sormanic@gmail.com. You will also include your homework and any corrections to your homework in this doc.

If you have a question, type **QUESTION** in your googledoc next to the point in your notes that has a question and email me with the subject **MAT313 QUESTION**. I will answer your question by inserting a photo into your googledoc or making an extra video.

Today we have two parts:

Part I teaches basic proofs and has six required HW problems

Part II uses sum notation for proofs and has extra credit problems

Part I: Watch [Playlist 313F20-15-PartI](#)

Lesson on Proofs with Matrices

In this lesson we will prove:

Thm Distribution of Matrix Mult over Add

$$A \times (B + C) = A \times B + A \times C$$

Thm Associativity of Matrix Multiplication

$$A \times (B \times C) = (A \times B) \times C$$

Defn: The zero matrix, O , is a matrix which has zeroes everywhere.

Thm $A \times O = ?$ and $O \times A = ?$

Defn: The identity matrix, I , is a square matrix with 1's on the diagonal and zeroes elsewhere.

Thm $A \times I = ?$ and $I \times A = ?$

What about

$$A \times B = ? \quad B \times A = ?$$

Defn of Matrix Mult

$$A \in M_{n \times m} \quad m \text{ columns} \quad n \text{ rows} \quad [A \times B]_{ik} = \sum_{j=1}^m a_{ij} b_{jk}$$

$$B \in M_{m \times l} \quad A \times B \in M_{n \times l}$$

$$A \times B = \left(\begin{array}{cccc} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{array} \right) \left(\begin{array}{cccc} b_{11} & b_{12} & b_{13} & \dots & b_{1l} \\ b_{21} & b_{22} & b_{23} & \dots & b_{2l} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & b_{m3} & \dots & b_{ml} \end{array} \right) = ?$$

j counter goes across the i^{th} row of A j counter goes down in the k^{th} column of B

$$[A \times B]_{ik} = \text{dot product of } i^{\text{th}} \text{ row of } A \text{ and } k^{\text{th}} \text{ column of } B$$

Defn of Matrix Addition

$$[A + B]_{ik} = [A]_{ik} + [B]_{ik}$$

Example:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1+1 & 2+6 \\ 3+0 & 4+1 \end{bmatrix}$$

$$A + B \in M_{n \times m}$$

when $A, B \in M_{n \times m}$.

Thm Distribution of Matrix Mult over Add.

$$A \times (B + C) = A \times B + A \times C$$

Proof for $A, B, C \in M_{2 \times 2}$:

$$\text{① } A \times (B + C) = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \times \left(\begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} + \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \right)$$

$$\text{② } = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \times \begin{bmatrix} (b_{11} + c_{11}) & (b_{12} + c_{12}) \\ (b_{21} + c_{21}) & (b_{22} + c_{22}) \end{bmatrix}$$

$$\text{③ } = \begin{bmatrix} a_{11}(b_{11} + c_{11}) + a_{12}(b_{21} + c_{21}) \\ a_{21}(b_{11} + c_{11}) + a_{22}(b_{21} + c_{21}) \end{bmatrix}$$

$$\text{④ } = \begin{bmatrix} a_{11}b_{11} + a_{11}c_{11} + a_{12}b_{21} + a_{12}c_{21} \\ a_{21}b_{11} + a_{21}c_{11} + a_{22}b_{21} + a_{22}c_{21} \end{bmatrix}$$

Next do right
hand side
until they match

statements Justifications

① Given $A, B, C \in M_{2 \times 2}$
Defn of $M_{2 \times 2}$

② Defn of Matrix
Addition

③ Defn of
Matrix Mult

④ Distribution
of mult over
add for \mathbb{R}

$$\textcircled{5} \stackrel{RHS}{=} A \times B + A \times C =$$

$$= \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \times \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$$

$$\textcircled{6} = \begin{bmatrix} (a_{11}b_{11} + a_{12}b_{21}) & (a_{11}b_{12} + a_{12}b_{22}) \\ (a_{21}b_{11} + a_{22}b_{21}) & (a_{21}b_{12} + a_{22}b_{22}) \end{bmatrix} + \begin{bmatrix} (a_{11}c_{11} + a_{12}c_{21}) & (a_{11}c_{12} + a_{12}c_{22}) \\ (a_{21}c_{11} + a_{22}c_{21}) & (a_{21}c_{12} + a_{22}c_{22}) \end{bmatrix}$$

$$\textcircled{7} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{11}c_{11} + a_{12}c_{21} \\ a_{21}b_{11} + a_{22}b_{21} + a_{21}c_{11} + a_{22}c_{21} \end{bmatrix}$$

Now check
this matrix

⑤ Given $A, B, C \in M_{2 \times 2}$
and defn of $M_{2 \times 2}$.

⑥ Defn of Matrix Mult
and Order of Operations

⑦ Defn of Matrix
Addition

$$\begin{bmatrix} a_{11}b_{12} + a_{12}b_{22} + a_{11}c_{12} + a_{12}c_{22} \\ a_{21}b_{12} + a_{22}b_{22} + a_{21}c_{12} + a_{22}c_{22} \end{bmatrix}$$

matches
Step 4

QED

Thm Associativity of Matrix Mult

$$A \times (B \times C) = (A \times B) \times C$$

Proof (for $A, B, C \in M_{2 \times 2}$):

① LHS $A \times (B \times C) =$

$$= \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \times \left(\begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \times \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \right)$$

②

$$= \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \times \left[\begin{bmatrix} (b_{11}c_{11} + b_{12}c_{21}) & (b_{11}c_{12} + b_{12}c_{22}) \\ (b_{21}c_{11} + b_{22}c_{21}) & (b_{21}c_{12} + b_{22}c_{22}) \end{bmatrix} \right]$$

$$\begin{aligned} \textcircled{3} \quad &= a_{11} (b_{11}c_{11} + b_{12}c_{21}) + a_{12} (b_{11}c_{12} + b_{12}c_{22}) \\ &= a_{21} (b_{11}c_{11} + b_{12}c_{21}) + a_{22} (b_{11}c_{12} + b_{12}c_{22}) \end{aligned}$$

④ Simplify

HW Fill in rest of proof

① Given $A, B, C \in M_{2 \times 2}$
Defn of $M_{2 \times 2}$

② Defn of Matrix Mult.

$$\begin{aligned} &a_{11} (\text{_____}) + a_{12} (\text{_____}) \\ &a_{21} (\text{_____}) + a_{22} (\text{_____}) \end{aligned}$$

③ Defn of Matrix Mult.

④ algebra

2:10 AM Sat Sep 26

Linear Algebra

Linear Algebra

Defn The zero matrix, $\mathbf{0}$, is a matrix which has zeroes everywhere.

Thm $A \times \mathbf{0} = \mathbf{0}$

Proof: ($A \in M_{2 \times 3}$, $\mathbf{0} \in M_{3 \times 4}$)

① $A \times \mathbf{0} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

② $= \begin{bmatrix} a_{11} \cdot 0 + a_{12} \cdot 0 + a_{13} \cdot 0 & a_{11} \cdot 0 + \dots & 0+0+0 & 0 \\ a_{21} \cdot 0 + a_{22} \cdot 0 + a_{23} \cdot 0 & 0+0+0 & 0+0+0 & 0 \end{bmatrix}$

③ $= \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \in M_{2 \times 4}$

HWZ $\mathbf{0} \times A = \mathbf{0}$ when $A \in M_{2 \times 3}$ $\mathbf{0} \in M_{4 \times 2}$

we will figure out the answer.

① by given $A \in M_{2 \times 3}$ & defn $M_{2 \times 3}$
by defn $\mathbf{0}$ matrix in $M_{3 \times 4}$

② by defn of matrix mult

③ by arithmetic

Defn The Identity Matrix, I , is a square matrix with 1's on diagonal and 0's elsewhere.

Thm $A \times I = A$

Proof: $I \in M_{3 \times 3}$ $A \in M_{4 \times 3}$

① $A \times I =$

$$= \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

②

$$= \begin{pmatrix} a_{11} \cdot 1 + a_{12} \cdot 0 + a_{13} \cdot 0 & a_{11} \cdot 0 + a_{12} \cdot 1 + a_{13} \cdot 0 \\ a_{21} \cdot 0 + a_{22} \cdot 1 + a_{23} \cdot 0 & a_{21} \cdot 0 + a_{22} \cdot 0 + a_{23} \cdot 1 \\ a_{31} \cdot 0 + a_{32} \cdot 0 + a_{33} \cdot 1 & a_{31} \cdot 0 + a_{32} \cdot 0 + a_{33} \cdot 1 \\ a_{41} \cdot 0 + a_{42} \cdot 0 + a_{43} \cdot 0 & a_{41} \cdot 0 + a_{42} \cdot 0 + a_{43} \cdot 1 \end{pmatrix}$$

$$I \in M_{2 \times 2} \quad I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$I \in M_{3 \times 3} \quad I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

HW3 → fill in blanks

①

→

②

Simplify
3.

HW1-HW3 are described above.

HW4 Prove $IxB=B$ when B is 2×3 and I is the correct choice of identity matrix.

HW5 is to find the errors in the incorrect proof below which has many errors so find all of the errors. Then either fix the proof or find a pair of specific 2×2 matrices A and B for

which this fails.

2:36 AM Sat Sep 26 Linear Algebra

Linear Algebra

False Thm $A \times B = B \times A$

Proof ($A, B \in M_{2 \times 2}$)

(1)
$$\text{LHS} \\ A \times B = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

(2)
$$= \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}$$

(3)
$$\text{RHS} \\ B \times A = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \times \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

(4)
$$= \begin{pmatrix} b_{11}a_{11} + b_{12}a_{21} & b_{11}a_{12} + b_{12}a_{22} \\ b_{21}a_{11} + b_{22}a_{21} & b_{21}a_{12} + b_{22}a_{22} \end{pmatrix}$$

HW5 Mark All errors in the "Proof" below.

(1) by matrix mult

(2) by matrix mult

(3) by matrix mult

(4) by matrix mult.

They Match QED

HW6: Prove that if A and B are 2×2 matrices and v is a vector then

$$A(Bv) = (Ab)v$$

Hint: Bv is a vector so on the LHS you first use matrix times vector and then matrix times vector again. On the RHS you need to use matrix times matrix to find (Ab) and then matrix times vector to multiply the answer times v.

Part II: Watch [Playlist 313F20-15-PartII](#) which is Extra Credit highly recommended for math majors and has three extra credit problems.

2:44 AM Sat Sep 26

Linear Algebra

Lesson on Proofs with Matrices

In this lesson we will prove:

Thm Distribution of Matrix Mult over Add
$$A \times (B + C) = A \times B + A \times C$$

Thm Associativity of Matrix Multiplication
$$A \times (B \times C) = (A \times B) \times C$$

Defn: The zero matrix, O , is a matrix which has zeroes everywhere.

Thm $A \times O = ?$ and $O \times A = ?$

Defn The identity matrix, I , is a square matrix with 1's on the diagonal and zeroes elsewhere.

Thm $A \times I = ?$ and $I \times A = ?$

What about
$$A \times B = B \times A ?$$

Part II Proofs
using Σ notations

Defn of Matrix Mult

$$[A \times B]_{ik} = \sum_{j=1}^m a_{ij} b_{jk}$$

ith row of A *a_{ii} a_{iz} ... a_{im}* *b_{ik}*
kth column of B *b_{1k} b_{2k} ... b_{mk}*

Defn of Addition

$$[A + B]_{ik} = [A]_{ik} + [B]_{ik} = a_{ik} + b_{ik}$$

$$A \times (B + C) = A \times B + A \times C$$

Proof using Σ notation

for $A \in M_{n \times m}$, $B, C \in M_{m \times l}$:

$$\textcircled{1} \text{ LHS } [A \times (B + C)]_{ik} = \sum_{j=1}^m [A]_{ij} [B + C]_{jk}$$

① by defn of matrix mult

$$\textcircled{2} = \sum_{j=1}^m [A]_{ij} ([B]_{jk} + [C]_{jk})$$

② defn of matrix addition

$$\textcircled{3} = \sum_{j=1}^m ([A]_{ij} [B]_{jk} + [A]_{ij} [C]_{jk})$$

③ distribution of mult over addition of reals.

$$\textcircled{4} = \sum_{i=1}^n ([A]_{ij} [B]_{jk}) + \sum_{i=1}^n [A]_{ij} [C]_{jk}$$

④ req. Σ

Part II Proofs

using Σ notations

Defn of Matrix Mult

$$[A \times B]_{ik} = \sum_{j=1}^m [A]_{ij} [B]_{jk}$$

i^{th} row of A

$a_{i1} a_{i2} \dots a_{im}$

k^{th} column of B

$b_{1k} b_{2k} \dots b_{mk}$

Defn of Addition

$$[A + B]_{ik} = [A]_{ik} + [B]_{ik}$$

$$= a_{ik} + b_{ik}$$

4:10 AM Sat Sep 26

Linear Algebra

Linear Algebra

Thm Distribution of Matrix Mult over Add

$$A \times (B + C) = A \times B + A \times C$$

Proof using Σ notation
for $A \in M_{n \times m}$, $B, C \in M_{m \times l}$:

- ① LHS $[A \times (B + C)]_{ik} = \sum_{j=1}^m [A]_{ij} [B + C]_{jk}$ ① by defn of matrix mult
- ② $= \sum_{j=1}^m [A]_{ij} ([B]_{jk} + [C]_{jk})$ ② defn of matrix addition
- ③ $= \sum_{j=1}^m ([A]_{ij} [B]_{jk} + [A]_{ij} [C]_{jk})$ ③ distribution of mult over addition of reals.
- ④ $= \sum_{j=1}^m ([A]_{ij} [B]_{jk}) + \sum_{j=1}^m [A]_{ij} [C]_{jk}$ ④ reg Σ

(5) RHS

$$[A \times B + A \times C]_{ik} =$$

$$= [A \times B]_{ik} + [A \times C]_{ik}$$

⑤ defn of matrix add.

$$= \sum_{j=1}^m [A]_{ij} [B]_{jk} + \sum_{j=1}^m [A]_{ij} [C]_{jk}$$

⑥ by def matrix Mult.

Match
Steps 4 + 6 QED

EC $A, B \in M_{n \times m}$ $C \in M_{m \times l}$

$$(A + B) \times C = A \times C + B \times C$$

Lesson 15 Proofs with Matrices

In this lesson we will prove:

Thm Distribution of Matrix Mult over Add

$$A \times (B + C) = A \times B + A \times C$$

Thm Associativity of Matrix Multiplication

$$A \times (B \times C) = (A \times B) \times C$$

Defn: The zero matrix, O , is a matrix which has zeroes everywhere.Thm $A \times O = O$ and $O \times A = O$ Defn The identity matrix, I , is a square matrix with 1's on the diagonal and zeroes elsewhere.Thm $A \times I = A$ and $I \times A = A$

What about

$$A \times B \stackrel{?}{=} B \times A \stackrel{?}{=} \text{FALSE}$$

Thm: If $A \in M_{n \times m}$ and $O \in M_{m \times l}$

then $A \times O = O \in M_{n \times l}$

Proof:

$$\textcircled{1} [A \times O]_{ik} = \sum_{j=1}^m [A]_{ij} [O]_{jk}$$

① by defn matrix mult

$$\textcircled{2} = \sum_{j=1}^m [A]_{ij} \cdot 0 \quad \textcircled{2} \text{ by defn of zero matrix}$$

$$\textcircled{3} = \sum_{j=1}^m 0 \quad \textcircled{3} \text{ by } a \cdot 0 = 0 \text{ for any } a \in \mathbb{R}$$

$$\textcircled{4} = 0 \quad \textcircled{4} 0 + 0 = 0$$

$$\textcircled{5} = [0]_{ik} \quad \textcircled{5} \text{ Defn of zero matrix QED}$$

$$\boxed{[E]} \quad O \times A = O$$

$$M_{n \times m} \quad M_{m \times l} \quad M_{n \times l}$$

Lesson 15 Proofs with Matrices

In this lesson we will prove:

Thm Distribution of Matrix Mult over Add

$$A \times (B + C) = A \times B + A \times C$$

Thm Associativity of Matrix Multiplication

$$A \times (B \times C) = (A \times B) \times C$$

Defn: The zero matrix, O , is a matrix which has zeroes everywhere.

Thm $A \times O = O$ and $O \times A = O$

Defn The identity matrix, I , is a square matrix with 1's on the diagonal and zeroes elsewhere.

Thm $A \times I = A$ and $I \times A = A$

What about

$$A \times B \stackrel{?}{=} B \times A ?$$
 FALSE

Thm Given $A \in M_{n \times m}$ $I \in M_{m \times m}$

then $A \times I = A$ (EC3) $I \times A = A$ $I \in M_{m \times m}$ $A \in M_{n \times m}$

Thoughts

$$[I]_{ij} = \begin{cases} 1 & \text{if } i=j \text{ (diagonal)} \\ 0 & \text{if } i \neq j \text{ (elsewhere)} \end{cases}$$

Defn of Identity Matrix

Proof:

$$\textcircled{1} [A \times I]_{ik} = \sum_{j=1}^m [A]_{ij} [I]_{jk} \text{ (by defn of matrix mult)}$$

$$\textcircled{2} = [A]_{i1} I_{1k} + [A]_{i2} I_{2k} + \dots + [A]_{ik} I_{kk} + \dots + [A]_{im} I_{mk}$$

$$\textcircled{3} = [A]_{i1} \cdot 0 + [A]_{i2} \cdot 0 + \dots + \cancel{[A]_{ik} \cdot 1} + \dots + [A]_{im} \cdot 0 \quad \text{(\textcircled{3} by defn of identity)}$$

$$\textcircled{4} = 0 + 0 + \dots + 0 + [A]_{ik} + 0 + \dots + 0 \quad \text{(\textcircled{4} algebra)}$$

$$\textcircled{5} = [A]_{ik} \quad \text{(\textcircled{5} by } 0 + a = a \text{ for } a \in \mathbb{R})$$

QED

Extra Credit: Prove for arbitrary matrices A and B and vector v using sum notation that $A(Bv) = (Av)B$

Extra Credit: Prove for arbitrary matrices A , B , and C using sum notation that $A(B \times C) = (Av)B \times C$