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Research Proposal: AMTAIR - Automating 
Transformative AI Risk Modeling 

Executive Summary: 

The Automating Transformative AI Risk Modeling (AMTAIR) project addresses a critical 
coordination failure in AI governance: despite unprecedented investment in AI safety, we lack the 
strategic infrastructure needed to align disparate efforts across technical, governance, and policy 
domains. 

We're developing computational tools that automate the extraction of probabilistic world models 
from AI safety literature using frontier language models. These tools will form the foundation for a 
comprehensive, adaptive AI Grand Strategy that remains robust across various futures. 

By integrating Bayesian networks, live forecasting data, and automated extraction pipelines, our 
approach will: 

1.​ Quantify existential risks from AI systems and identify intervention points 
2.​ Make implicit models explicit, highlighting agreements and cruxes of disagreement 
3.​ Evaluate policy impacts across multiple worldviews and scenarios 
4.​ Generate strategic recommendations that adapt as new information emerges 

We require approximately $200,000 to build these tools over 12 months, validate them with experts, 
and develop an initial AI Grand Strategy framework. Our team combines expertise in Bayesian 
modeling, AI governance, and forecasting theory—bridging technical, social, and policy domains 
with precisely the interdisciplinary skills needed for this challenge. 

The window for establishing effective governance is narrowing as AI capabilities accelerate. Our 
project creates the epistemic infrastructure necessary for global coordination on what may be 
humanity's most consequential technical challenge. 

1. Introduction and Identification of the Problem: 

1.1 The Coordination Problem 

The development of advanced AI systems presents a paradox: unprecedented investment in safety 
research coexists alongside a fundamental coordination failure. Despite millions in funding, rapidly 
growing awareness, and proliferating frameworks, we lack the strategic infrastructure needed to 
align these disparate efforts as AI capabilities advance at an accelerating pace. 

This isn't merely inefficient—it systematically increases existential risk. When organizations 
function as independent processors without shared protocols, we generate duplicative work, leave 
critical gaps unaddressed, and create inconsistent approaches to interdependent problems. Technical 



alignment researchers develop solutions without implementation pathways; policy specialists craft 
frameworks without technical grounding; ethicists articulate principles without operational 
specificity. Each community operates with different terminologies, priorities, and implicit theories 
of change—a fragmentation that becomes exponentially more dangerous as capabilities approach 
human-level intelligence. 

Technical solutions alone cannot address these coordination challenges. Perfect alignment 
techniques would still fail in a misaligned governance landscape where competitive pressures, 
verification challenges, and international tensions remain unresolved. We need tools that bridge 
technical and governance domains, making implicit models explicit and facilitating coordination 
around shared understanding. As we will see next, the consequences of failing to do so compound 
exponentially as AI capabilities advance. 

1.2 The Exponential Risk Multiplier 

As AI capabilities advance, the consequences of coordination failures compound rather than merely 
accumulate. This follows directly from probability theory: when multiple systems must function 
correctly to avoid catastrophe, the probability of failure increases exponentially with the number of 
potential failure points. 

Consider a simplified model where safety depends on coordinated responses across N domains 
(technical alignment, deployment oversight, international governance, etc.). If each domain has an 
independent 10% chance of failure (though in reality, failures are likely correlated), the probability 
of at least one critical failure scales as: 

P(failure) = 1 - (0.9)^N 

With just 3 domains this results in: P(failure) = 27.1% and with 5 domains: P(failure) = 41.0% 

 

This exponential scaling creates a rapidly narrowing window for effective intervention. Given 
current AI development trajectories—where capabilities previously projected decades away emerge 
within months—we face unprecedented time pressure. The recent compression of milestone 
achievement intervals (e.g., time between GPT-3 and GPT-4 compared to previous advancements) 
suggests this window continues to shrink. 

Unlike other global coordination problems (climate change, nuclear security), AI development 
presents unique challenges: 

●​ Threshold dynamics where capabilities may rapidly cross critical thresholds 
●​ Intrinsic advantages to offense over defense in deployment 
●​ Verification challenges that complicate trust mechanisms 
●​ Potential for irreversible deployment decisions 

These factors make the coordination problem both more urgent and more difficult than comparable 
challenges in human history. 



1.3 The Information Processing Bottleneck 

At its core, AI governance is an information processing challenge. Developing effective strategy 
requires integrating insights across technical, social, economic, and political domains—each with its 
own language, assumptions, and uncertainty profiles. 

Currently, this integration happens primarily through manual processes: 

●​ Researchers reading and interpreting papers from adjacent fields 
●​ Workshops and conferences facilitating cross-domain exchange 
●​ Individuals mentally synthesizing perspectives into personal world models 

These manual approaches create severe bottlenecks as the volume and complexity of relevant 
information grows. For example, the Modeling Transformative AI Risks (MTAIR) project 
demonstrated the value of formalizing world models using Bayesian networks, but required 
intensive labor to extract these models from research papers and expert judgments. 

The bottleneck manifests in concrete operational limitations: 

●​ New research takes months to incorporate into strategic thinking 
●​ Expert time is consumed by basic information processing rather than novel insights 
●​ Cross-domain translation relies on rare individuals with interdisciplinary backgrounds 
●​ Models remain static rather than updating with new developments 

Crucially, this information processing challenge doesn't scale linearly with more researchers—the 
complexity of coordination itself grows superlinearly with team size. More researchers without 
better coordination tools can actually decrease overall effectiveness. 

Our project addresses precisely this bottleneck, automating critical components of the information 
processing pipeline while preserving human judgment where it remains essential. By leveraging 
frontier LLMs for structured knowledge extraction and integrating with live forecasting platforms, 
we create a dynamic strategic coordination platform that scales with the growing complexity of the 
AI governance landscape. This leads us to our central research question: how can we effectively 
automate and formalize world models from AI governance literature to enable robust prediction of 
policy impacts? 

2. Research Question and Objectives 

2.1 Primary Research Question 

How can frontier AI technologies be leveraged to automate the extraction and formalization of 
causal world models from AI governance literature, enabling robust prediction of policy impacts 
across divergent futures and facilitating improved strategic coordination? 

This question directly addresses the coordination problem and information processing bottleneck 
identified above. By automating the extraction of implicit models from research papers and 



formalizing them in a common representational framework, we can overcome key barriers to 
strategic coordination in AI governance. 

The question encompasses several critical dimensions: 

●​ Technical feasibility (can LLMs extract structured causal models with sufficient accuracy?) 
●​ Integration challenges (how can qualitative arguments be translated into quantitative 

frameworks?) 
●​ Evaluation methods (how do we assess whether extracted models capture the original 

intent?) 
●​ Application pathways (how can these formalized models inform policy decisions?) 

By framing our inquiry in terms of automation, extraction, and formalization, we focus on the 
specific technical challenges that must be overcome to scale AI governance capacity. The emphasis 
on "robust prediction" highlights our goal of developing tools that remain valuable across different 
potential futures rather than optimizing for a single scenario. 

2.2 Sub-Questions 

To answer our primary research question, we must address several interconnected sub-questions: 

1.​ How can LLMs effectively extract causal world models from unstructured text?​
 

○​ What prompting strategies maximize extraction accuracy? 
○​ How can we detect and correct for extraction errors or biases? 
○​ What intermediate representations facilitate the transition from text to formal 

models? 
○​ How do we handle disagreements or contradictions within source materials? 

2.​ What mechanisms enable reliable integration between prediction markets and 
Bayesian networks?​
 

○​ How should forecasts be mapped to model variables? 
○​ What weighting schemes balance different information sources? 
○​ How frequently should updates occur, and how should conflicting signals be 

resolved? 
○​ What feedback loops maintain calibration between models and real-world 

developments? 
3.​ How can policy impacts be rigorously modeled across diverse worldviews?​

 
○​ What methodologies identify robust interventions despite worldview disagreements? 
○​ How should policy interventions be represented within causal models? 
○​ What metrics effectively capture policy effectiveness across different value systems? 
○​ How can counterfactual reasoning about policy impacts be validated? 

4.​ What specific attributes must our modeling tools possess to meaningfully represent 
existential risk?​
 

○​ How should uncertainty be represented in both model structure and parameters? 



○​ What level of granularity balances comprehensiveness with usability? 
○​ How can subjective judgments be integrated with empirical data? 
○​ What validation methods can assess model quality despite the absence of ground 

truth? 

These sub-questions define concrete research pathways that collectively address our primary 
question. Each represents a distinct technical challenge that must be solved to realize our vision of 
automated, formalized world models for AI governance, and together they form the foundation of 
our methodological approach. 

2.3 Success Metrics 

We will evaluate the success of our research through multiple measurable criteria: 

Extraction Accuracy (Benchmark against Human Expert Annotation) 

●​ Precision and recall of node identification compared with expert annotation 
●​ Precision and recall of edge identification compared with expert annotation 
●​ Probability estimation compared to expert judgments 
●​ Identification of critical variables as judged by domain experts 

Model Validation Criteria 

●​ Formal verification of model mathematical consistency (e.g., probabilities sum to 1) 
●​ Structural validity assessment through expert review 
●​ Calibration assessment through historical backtesting where applicable 
●​ Sensitivity analysis to identify and address unstable model components 

Usability Metrics for Policy Stakeholders 

●​ Time to understand key model insights for informed non-specialists 
●​ Success rate for common tasks for target user groups 
●​ System Usability Scale (SUS) score for primary interfaces 
●​ Reported intent to adopt from surveyed stakeholders 

Posterior Probability Updates 

●​ Formalized likelihood updates in response to new information 
●​ Convergence assessment across multiple worldviews as evidence accumulates 
●​ Surprise minimization measured through proper scoring rules 
●​ Response time to incorporate new research findings 

These metrics provide concrete benchmarks to assess our progress and the ultimate utility of our 
tools. We recognize that some metrics involve subjective judgments (e.g., expert approval ratings), 
but we will use structured evaluation protocols to ensure consistency and transparency in these 
assessments. 



By setting specific, measurable criteria across technical accuracy, validation, usability, and 
adaptability dimensions, we create accountability for our research and clear milestones to guide our 
development process. 

3. Theoretical Foundations and State of the Art 

3.1 The MTAIR Framework: Achievements and Limitations 

The Modeling Transformative AI Risks (MTAIR) project represents the most comprehensive 
attempt to date at formalizing existential risks from advanced AI. Developed by a team including 
Clarke, Cottier, Englander, Eth, Manheim, Martin, and Rice, MTAIR created a structured Bayesian 
network model of key risk factors, uncertainties, and potential interventions. 

MTAIR's core achievements include: 

●​ Mapping complex causal relationships between AI development, governance, and risk 
factors 

●​ Quantifying uncertainty through probabilistic representations 
○​ Enabling sensitivity analysis to identify crucial variables 

●​ Creating a shared vocabulary for discussing AI risk pathways 
●​ Demonstrating the feasibility of formal modeling for existential risks 

However, MTAIR also revealed significant limitations that our project aims to address: 

Manual Bottlenecks The original MTAIR implementation required intensive manual labor to 
extract and formalize world models from research papers and expert judgments. This process 
involved reading papers, identifying key claims, mapping causal relationships, and estimating 
probabilities—all completed by human researchers. This approach simply doesn't scale with the 
growing volume of AI safety literature. 

Static Nature Once constructed, updating the MTAIR model with new research findings required 
substantial manual effort. The model remained largely static rather than dynamically incorporating 
emerging insights and data. In a rapidly evolving field, this severely limits ongoing relevance. 

Limited Accessibility The Analytica software implementation of MTAIR, while powerful, 
presented barriers to widespread engagement. Complex model structures and interfaces restricted 
meaningful interaction to those with specialized training, limiting broader uptake among 
policymakers and other stakeholders. 

Worldview Integration Challenges While MTAIR acknowledged diverse perspectives on AI risk, 
fully representing multiple worldviews proved challenging. The model primarily reflected a 
synthesis rather than enabling exploration of how different assumptions lead to divergent 
conclusions—a crucial capability for identifying robust interventions. 

Our project directly addresses these limitations by: 

1.​ Automating the extraction process using frontier LLMs 



2.​ Creating dynamic update mechanisms integrated with live data sources 
3.​ Developing intuitive interfaces for different stakeholder groups 
4.​ Explicitly modeling multiple worldviews and their implications 

By building on MTAIR's achievements while overcoming its limitations, we position our work as 
the natural next step in the evolution of AI risk modeling. 

3.2 Probabilistic Modeling for AI Safety 

Bayesian networks provide the mathematical foundation for our approach to AI risk modeling. 
These probabilistic graphical models represent variables as nodes and causal relationships as 
directed edges, with conditional probability tables encoding the strength and nature of these 
relationships. 

Bayesian Networks as Knowledge Representation Bayesian networks offer several advantages 
for representing knowledge about AI risks: 

●​ They naturally encode uncertainty through probability distributions 
●​ They capture conditional independence relationships, simplifying complex systems 
●​ They support both causal reasoning (effects of interventions) and evidential reasoning 

(updating based on observations) 
●​ They provide a formal framework for integrating diverse information sources 

For AI safety specifically, Bayesian networks enable: 

●​ Decomposition of complex risk scenarios into more tractable components 
●​ Explicit representation of causal pathways from development decisions to outcomes 
●​ Principled updating as new evidence emerges 
●​ Identification of critical uncertainties through sensitivity analysis 

Directed Acyclic Graphs (DAGs) and Causal Inference DAGs form the structural backbone of 
Bayesian networks, with important theoretical properties: 

●​ Acyclicity ensures coherent probability calculations 
●​ Directed edges represent causal relationships rather than mere correlations 
●​ The d-separation criterion identifies conditional independence relationships 
●​ Pearl's do-calculus enables reasoning about interventions 

These properties are crucial for modeling AI risk, where we need to distinguish: 

●​ Correlations that merely predict outcomes 
●​ Causal relationships that can be leveraged for intervention 
●​ Confounding variables that might mislead analysis 

Current Limitations in Automated Causal Extraction Despite significant advances in natural 
language processing, automatically extracting causal models from text remains challenging: 



●​ Language often expresses causality implicitly or ambiguously (e.g., "As AI systems become 
more capable, governance challenges will increase" leaves unclear whether capability 
directly causes governance challenges or operates through intermediate mechanisms) 

●​ Arguments rely on unstated assumptions and background knowledge 
●​ Probability judgments may be expressed qualitatively rather than quantitatively 
●​ Technical terminology varies across disciplines 

Recent work on causal extraction using LLMs has shown promise but still requires careful 
prompting and validation. Our approach builds on this work while developing specialized 
techniques for the AI safety domain, where arguments often involve complex counterfactuals and 
nested conditional statements. 

3.3 AI Governance Literature and Forecasting 

The AI governance landscape spans multiple disciplinary traditions, each with its own approaches 
to uncertainty, evidence, and intervention design. 

Key AI Governance Frameworks Several frameworks currently shape discourse on AI 
governance: 

●​ The governance of AI safety principles (e.g., Asilomar principles) 
●​ Risk-based regulatory approaches (e.g., EU AI Act, now adopted but being implemented) 
●​ International coordination mechanisms (e.g., OECD AI principles) 
●​ Technical standards frameworks (e.g., IEEE Ethics frameworks) 
●​ Corporate governance structures (e.g., responsible AI teams) 

These frameworks often operate with implicit world models—assumptions about how technological 
development proceeds, how incentives shape behavior, and how interventions affect outcomes. 
Making these models explicit is essential for meaningful comparison and integration. 

Prediction Markets and Expert Forecasting Forecasting platforms represent a crucial 
complementary approach to AI governance: 

●​ Metaculus hosts specialized questions on AI development trajectories and risk factors (a 
primary integration target for our project) 

●​ Good Judgment Project and Samotsvety provide expert forecasts on key questions 
●​ Manifold Markets enables community prediction on more granular questions 
●​ Epochs' AI forecasting tracks real-world progress against predictions 

These platforms generate valuable probability estimates for specific questions, but integration with 
comprehensive causal models remains limited. Current approaches typically: 

●​ Treat forecasts as isolated data points rather than components of a causal system 
●​ Lack formal methods for updating complex models based on forecast results 
●​ Miss opportunities to identify which forecasts would be most informative for 

decision-making 



Gaps Between Technical Risk Modeling and Policy Implementation A critical gap exists 
between technical risk models and actionable policy: 

●​ Technical models often lack the institutional context necessary for implementation 
●​ Policy frameworks typically underspecify the causal mechanisms by which they reduce risk 
●​ Translation between technical and policy languages remains largely manual 
●​ Feedback loops for policy evaluation based on risk models are underdeveloped 

Our project aims to bridge this gap by creating tools that connect technical risk assessments to 
concrete policy levers, enabling policymakers to explore intervention impacts and technical 
researchers to frame their work in terms of governance implications. 

3.4 Transformative Potential of LLM-Assisted Modeling 

Recent advances in large language models have created a technological inflection point that enables 
our approach for the first time. 

Frontier LLM Capabilities for Structured Knowledge Extraction Models like GPT-4, GPT-4o, 
R1, Claude 3.7 Sonnet, and Claude Opus demonstrate unprecedented capabilities for transforming 
unstructured text into structured representations: 

●​ They can identify entities, relationships, and claims from complex technical documents 
●​ They understand nuanced expressions of uncertainty and conditionality 
●​ They can maintain consistency across long contexts necessary for modeling complex 

arguments 
●​ They can translate between different disciplinary languages and frameworks 

Our preliminary experiments using carefully engineered prompts show that these models can extract 
causal structures from AI safety papers with accuracy approaching human performance on many 
dimensions. For example, when tasked with identifying key variables and causal relationships from 
Carlsmith's work on power-seeking AI, Claude 3.7 achieved precision and recall equivalent to 
manual annotation. 

Technological Inflection Points Several concurrent technological developments make our 
approach particularly timely: 

●​ LLMs have crossed a capability threshold for reliable structured extraction 
●​ Inference costs are declining rapidly, making large-scale processing economical 
●​ Specialized fine-tuning techniques enable domain-specific performance improvements 
●​ Prediction markets are maturing with more liquidity and expert participation 
●​ Bayesian modeling tools are becoming more accessible and computationally efficient 

Together, these developments create a unique opportunity to automate and scale previously manual 
processes in AI governance modeling. 

Neglected Opportunity in Automated Approaches Despite these enabling technologies, 
automated approaches to AI governance modeling remain surprisingly underexplored: 



●​ Most forecasting platforms still rely entirely on human judgment without model integration 
●​ Governance frameworks rarely incorporate formal causal models 
●​ Technical alignment research and governance discourse remain largely separate 
●​ Few projects are exploring LLM automation for knowledge extraction in this domain 

By addressing this neglected opportunity, our project can create substantial leverage in the AI 
governance ecosystem, dramatically scaling the information processing capacity of the field at a 
critical moment in AI development. 

4. Methodology: Technical Implementation and Validation 

4.1 System Architecture and Data Flow 

Our system architecture implements an end-to-end pipeline from unstructured text to actionable 
insights. The architecture consists of five interconnected components, each handling a specific 
aspect of the workflow: 

Text Ingestion and Preprocessing 

●​ Source documents (papers, blog posts, expert reports) enter the system through APIs or 
manual upload 

●​ Documents undergo preprocessing including format normalization, metadata extraction, and 
relevance filtering 

●​ Preprocessed documents are stored in a version-controlled repository with citation 
information preserved 

LLM-Powered Extraction Layer 

●​ Documents are analyzed using a two-stage process: 
1.​ Identification of key variables, claims, and uncertainty expressions 
2.​ Mapping of relationships between identified elements 

●​ Extraction occurs through carefully engineered prompts to frontier LLMs (Claude, GPT-4) 
●​ Extracted structures are represented in an intermediate ArgDown format (a markdown-like 

notation for structured argument mapping, documentation at: https://argdown.org) that 
captures argument structure with syntax like <premises> and [hypothesis] 

Bayesian Network Construction Module 

●​ ArgDown representations are transformed into formal Bayesian networks 
●​ Nodes represent variables identified in the extraction phase 
●​ Edges represent causal relationships and dependencies 
●​ Conditional probability tables are populated based on extracted probability judgments 
●​ When explicit probabilities are absent, LLMs generate estimates based on contextual 

reasoning 

Forecasting Integration Layer 



●​ External forecasting data is ingested through APIs from platforms like Metaculus 
●​ Forecasts are mapped to corresponding variables in the Bayesian network through a 

combination of semantic matching algorithms and expert-defined mappings 
●​ Weighting algorithms determine the influence of different forecast sources 
●​ Update mechanisms maintain synchronization between forecasts and network parameters 

Interactive Visualization and Analysis Interface 

●​ Users interact with the system through a web-based interface 
●​ Visualization components display network structure and probability distributions 
●​ Analysis tools enable query execution, sensitivity analysis, and counterfactual reasoning 
●​ Policy evaluation features support intervention modeling and scenario comparison 

Data flows between these components through standardized formats, with metadata tracking the 
provenance and uncertainty of all information. This architecture ensures that the system remains 
modular, allowing individual components to be improved independently while maintaining 
end-to-end functionality. 

4.2 Automated Extraction Pipeline 

The automated extraction pipeline represents a core technical innovation of our project. It 
transforms unstructured text into structured knowledge representations through several specialized 
steps: 

ArgDown Intermediate Representation We employ ArgDown—a markdown-like notation for 
argument mapping developed by Christian Voigt (2014)—as an intermediate representation between 
natural language and formal Bayesian networks. ArgDown captures: 

●​ Statements (claims about the world, represented as [Statement]) 
●​ Premises (supporting evidence or reasoning, represented as <Premise>) 
●​ Support relationships (indicating how premises support statements, represented as =>) 
●​ Attack relationships (indicating rebuttals or counterarguments, represented as =/=>) 
●​ Undercutting relationships (challenging inferential connections rather than conclusions, 

represented as =|=>) 

For example, an argument might be represented as: <AI systems will continue to improve rapidly> 
=> [Advanced AI systems pose existential risk] 

This intermediate representation preserves the argumentative structure of source texts while 
providing sufficient formality for subsequent transformation into Bayesian networks. 

Two-Stage Prompting Approach Our extraction uses a two-stage LLM prompting strategy to 
maximize accuracy: 

Stage 1: Identification 

●​ Prompt LLMs to identify all claims, premises, and evidence in the source text 
●​ Extract explicit probability judgments and uncertainty expressions 

https://en.wikipedia.org/wiki/Argument_map#cite_note-Argdown-43


●​ Identify conditional statements and counterfactual reasoning 

Stage 2: Structuring 

●​ Prompt LLMs to map relationships between the identified elements 
●​ Determine support, attack, and undercutting relationships 
●​ Organize elements into a coherent argument structure 

This staged approach outperforms end-to-end extraction in our preliminary experiments when 
compared to ground truth annotations. 

Specialized Handling for Complex Cases The extraction pipeline includes specialized handling 
for challenging cases frequently encountered in AI safety literature: 

●​ Implicit Premises: LLMs identify unstated assumptions that authors rely on 
●​ Nested Conditionals: Multi-level conditions are preserved through explicit dependency 

tracking 
●​ Citation-Backed Claims: Evidence from citations is distinguished from direct argumentation 
●​ Quantitative Uncertainty: Numerical probabilities are extracted directly when present 
●​ Qualitative Uncertainty: Linguistic expressions of uncertainty are mapped to probability 

ranges 

For example, when a text states "X is likely to cause Y if Z is present," our system captures both the 
conditional relationship and the uncertainty expression, mapping "likely" to an appropriate 
probability range based on calibration studies. 

Quality Assurance and Validation The extraction pipeline incorporates several validation 
mechanisms: 

●​ Multiple extraction runs with different prompts to assess consistency 
●​ Checks for logical and structural coherence in extracted arguments 
●​ Identification of contradictions or circular reasoning 
●​ Comparison of extraction results against a growing database of expert annotations 

These validation processes ensure that the extracted structures faithfully represent the source 
materials while identifying areas where human review may be necessary. 

4.3 Bayesian Network Construction and Inference 

Once arguments are extracted in ArgDown format, we construct formal Bayesian networks for 
probabilistic reasoning and inference. 

DAG Construction from Extracted Arguments The transformation from ArgDown to DAG 
follows a systematic procedure: 

1.​ Each statement and premise becomes a node in the graph 
2.​ Support relationships become directed edges from premise to statement 
3.​ Attack relationships become directed edges with negative influence 



4.​ Undercutting relationships modify the strength of existing edges 

This transformation preserves the argumentative structure while creating a mathematically tractable 
representation for probabilistic inference. 

Probability Table Population Conditional probability tables (CPTs) are populated through a 
combination of: 

●​ Direct extraction of explicit probabilities from source texts 
●​ LLM-generated estimates based on contextual cues and strength of arguments 
●​ Expert elicitation for critical parameters 
●​ Prior distributions from related forecasting questions 

For nodes with many parents—a common challenge in complex models—we may employ 
specialized representations like noisy-OR and noisy-AND. These reduce parameter requirements 
from exponential (2^n for n binary parents) to linear (n parameters) while maintaining 
representational adequacy for many real-world causal relationships. 

Consistency Enforcement and Calibration Mathematical consistency is enforced through: 

●​ Ensuring all probability distributions sum to 1 
●​ Applying Bayes' theorem to validate conditional probabilities 
●​ Checking for coherence across the joint distribution 
●​ Detecting and resolving inconsistencies between different information sources 

Additionally, we calibrate the model against known benchmarks where available and perform 
sensitivity analysis to identify parameters with disproportionate influence on key outputs. 

Inference Techniques for Complex Networks For inference in large, complex networks, we 
employ: 

●​ Variable elimination for exact inference in tractable subnetworks 
●​ Junction tree algorithms for efficient exact inference 
●​ Importance sampling for approximate inference in larger networks 
●​ Markov Chain Monte Carlo methods for complex queries 

These techniques balance computational efficiency with accuracy, allowing meaningful analysis 
even in large models with intricate dependency structures. 

4.4 Prediction Market Integration Module 

To keep our models current with the latest expert judgments, we integrate with prediction markets 
and forecasting platforms through specialized connectors. 

API Connections with Forecasting Platforms We establish automated connections with: 

●​ Metaculus: Accessing probability distributions for AI-relevant questions (API calls) 
●​ Manifold Markets: Incorporating market-based forecasts for granular questions 
●​ Good Judgment: Integrating superforecaster predictions for high-stakes questions 



●​ Epoch: Tracking real-world AI development against predictions 

These connections retrieve both current forecasts and historical data, enabling trend analysis and 
comparison of forecast evolution over time. Each forecast is mapped to corresponding variables in 
our Bayesian network through a combination of semantic matching algorithms and expert-defined 
mappings. 

Weighting Mechanisms for Source Reliability Not all forecasts are equally reliable. We 
implement a weighting system based on: 

●​ Track record of forecasters or platforms 
●​ Relevance of the forecast to the specific variable 
●​ Recency and update frequency 
●​ Consistency with other information sources 
●​ Expert assessment of forecast quality 

These weights dynamically adjust based on performance, ensuring that the most reliable sources 
have greater influence on the model. 

Real-Time Update Procedures Our system maintains synchronization between forecasts and 
model parameters through: 

●​ Scheduled polling of API endpoints at appropriate intervals 
●​ Event-triggered updates when significant forecast changes occur 
●​ Batch processing to incorporate multiple forecast updates efficiently 
●​ Anomaly detection to flag unusual or potentially erroneous forecast movements 

This real-time updating ensures that our models reflect the latest information without requiring 
manual intervention. 

4.5 Validation Methodology 

Rigorous validation is essential for establishing the credibility of our approach. We employ a 
multi-faceted validation strategy: 

Comparison with Expert Annotations We assess extraction accuracy against a growing database 
of expert annotations: 

●​ Multiple experts independently analyze source documents 
●​ Inter-annotator agreement establishes a reliability baseline 
●​ Automated extraction is compared against the consensus annotation 
●​ Discrepancies are analyzed to identify systematic errors or biases 

This process provides quantitative metrics on precision, recall, and F1 scores for different aspects of 
extraction. 

Ablation Studies to Identify Critical Components We conduct systematic ablation studies to: 

●​ Identify which components contribute most to overall performance 



●​ Measure the impact of different prompting strategies 
●​ Assess the value of the two-stage extraction approach 
●​ Evaluate the contribution of specialized handling for complex cases 

These studies guide our development priorities and highlight components requiring additional 
refinement. 

Red-Teaming Approaches We proactively identify failure modes through structured red-teaming: 

●​ Adversarial document creation designed to challenge the extraction system 
●​ Edge case testing with unusual argument structures and reasoning patterns 
●​ Stress testing with exceptionally complex or ambiguous texts 
●​ Cross-domain validation using materials from adjacent fields 

This red-teaming approach helps us identify and address vulnerabilities before deployment, 
improving overall robustness. 

5. Expected Outcomes and Applications 

5.1 World Model Extraction and Analysis Tool 

Our initial concrete deliverable will be a functional World Model Extraction and Analysis Tool—a 
system that transforms AI safety literature into structured causal models for analysis and evaluation. 
This tool embodies our broader methodology and demonstrates its practical utility. 

Interface Specifications The tool will feature: 

●​ An intuitive web-based interface accessible to technical and non-technical users 
●​ Customizable input panels for adjusting key variables and assumptions 
●​ Visual representation of the underlying Bayesian network 
●​ Real-time updating of probabilities as inputs change 
●​ Ability to save and share specific configurations 
●​ Comparison views for examining different worldviews or scenarios 
●​ Structured feedback mechanisms to capture user insights for iterative improvement 

Users will be able to modify assumptions according to their beliefs, enabling exploration of how 
different premises lead to different conclusions about existential risk. 

Visualization Approaches Complex probabilistic models require sophisticated visualization 
techniques: 

●​ Interactive node-link diagrams showing causal relationships 
●​ Heat maps indicating variable sensitivity and impact 
●​ Tornado diagrams highlighting key uncertainties 
●​ Probability distribution plots for outcomes and critical variables 
●​ Time-series projections showing how risks may evolve 



These visualizations make the underlying model accessible and interpretable, converting abstract 
probabilities into actionable insights. 

Sensitivity Analysis and Scenario Exploration The tool will support in-depth exploration 
through: 

●​ One-at-a-time sensitivity analysis for individual parameters 
●​ Global sensitivity analysis identifying interaction effects 
●​ Scenario definition and comparison utilities 
●​ "Backward reasoning" to identify conditions needed for specific outcomes 
●​ Critical path analysis highlighting necessary and sufficient conditions 

These features enable users to identify which uncertainties matter most for their conclusions and 
where additional research or evidence gathering would be most valuable. 

Practical Utility Assessment: With sufficient funding, we will implement a structured framework 
to evaluate real-world utility, including: (1) targeted case studies with policy stakeholders, (2) 
comparison against expert consensus, and (3) retrospective analysis of system insights. 

5.2 The AI Grand Strategy Framework 

Beyond the extraction tool, we will develop a comprehensive framework for AI Grand Strategy that 
builds on our technical infrastructure. 

Strategy Evaluation Across Worldviews The framework will: 

●​ Formalize diverse worldviews from the AI safety community 
●​ Identify robust strategies that perform well across multiple worldviews 
●​ Highlight critical disagreements that drive strategy divergence 
●​ Map conditions under which different strategies become optimal 

This approach transcends typical strategy development by explicitly modeling how different 
assumptions lead to different strategic conclusions. 

Criteria for Strategy Evaluation Strategies will be evaluated against multiple criteria: 

●​ Expected risk reduction across probability distributions 
●​ Robustness to uncertainty in key parameters 
●​ Adaptability to changing conditions and new information 
●​ Political and technical feasibility 
●​ Potential for unintended consequences 
●​ Interaction effects with other strategic elements 

These criteria ensure that recommended strategies are both theoretically sound and practically 
implementable. 

Adaptation Mechanisms Unlike static strategy documents, our framework will include: 

●​ Explicit conditional branches specifying how strategy should adapt as conditions change 



●​ Triggers for strategy reevaluation based on new information 
●​ Continuous integration of emerging research and forecast updates 
●​ Periodic full reviews to incorporate structural model changes 

This adaptive approach ensures that the strategy remains relevant as the AI landscape evolves. 

5.3 AGI Risk Monitor Visualization 

To communicate AI risk levels to broader audiences, we will develop an AGI Risk Monitor—a 
visual representation inspired by the Bulletin of Atomic Scientists' Doomsday Clock but 
specifically focused on AI risks. 

Visual Representation of Risk Indicators The monitor will feature: 

●​ An intuitive interface showing proximity to high-risk conditions 
●​ Supplementary indicators for specific risk factors 
●​ Color coding for different risk categories and sources 
●​ Historical tracking showing how risk assessments have changed 
●​ Explanatory components detailing the reasoning behind current assessments 

This visualization translates complex risk models into an accessible format for policymakers, 
journalists, and the public. 

Update Mechanisms and Transparency The monitor will maintain credibility through: 

●​ Algorithmic updating based on the underlying Bayesian network 
●​ Clear documentation of how indicators affect the risk assessment 
●​ Transparent methodology for integrating different information sources 
●​ Version history tracking showing when and why assessments changed 
●​ Expert review panels validating major assessment movements 

These features ensure that the monitor isn't merely a subjective assessment but a principled 
reflection of the underlying risk model. 

Educational Components Beyond risk communication, the monitor will include: 

●​ Interactive explainers for key AI risk concepts 
●​ User-adjustable controls to explore how different factors affect risk 
●​ Contextual information linking current developments to risk assessments 
●​ Resources for deeper understanding of specific concerns 
●​ Recommendations for relevant research and policy proposals 

These educational elements help users develop more sophisticated mental models of AI risk, 
increasing the overall quality of public discourse. 

5.4 Cross-Model Comparison Tools 



A unique contribution of our approach is the ability to compare different world models and identify 
sources of agreement and disagreement. 

Techniques for Identifying Agreement and Disagreement Our tools will implement: 

●​ Structural comparison identifying shared and distinct causal pathways 
●​ Parameter comparison highlighting differences in probability estimates 
●​ Outcome analysis showing how models diverge in conclusions 
●​ Critical variable identification focusing on key disagreements 

These techniques help stakeholders understand where genuine disagreements exist versus where 
differences might be merely terminological or superficial. 

Visualization of Worldview Differences We will create specialized visualizations for model 
comparison: 

●​ Side-by-side network displays highlighting structural differences 
●​ Overlay views showing where models agree and disagree 
●​ Difference heat maps indicating parameter divergences 
●​ Outcome distribution comparisons across models 

These visualizations make complex model differences immediately apparent, facilitating productive 
discussions about genuine cruxes. 

Consensus Model Construction Where appropriate, our tools will support: 

●​ Automated identification of shared structures across models 
●​ Aggregation of probability estimates from different sources 
●​ Explicit representation of disagreements as probability distributions 
●​ Construction of minimal models that capture essential disagreements 

These capabilities help build shared understanding even when complete consensus isn't possible, 
creating foundations for coordination despite differing perspectives. 

5.5 Other Possible Tools 

Beyond our core deliverables, we envision several additional tools that could be developed as 
extensions: 

Policy Impact Simulator 

●​ Interactive simulation of policy interventions 
●​ Counterfactual analysis capabilities 
●​ Cost-benefit assessment frameworks 
●​ Multi-objective optimization tools 
●​ Stakeholder impact analysis 

AI Progress Tracker 



●​ Benchmarking of AI capabilities against predefined metrics 
●​ Forecast comparison with actual developments 
●​ Early warning indicators for capability jumps 
●​ Integration with technical ML research literature 
●​ Trend analysis and trajectory projection 

Coordination Platform 

●​ Shared workspaces for collaborative modeling 
●​ Version control for model development 
●​ Commenting and annotation capabilities 
●​ Expert elicitation protocols 
●​ Consensus-building mechanisms 

Strategic Early Warning System 

●​ Real-time monitoring of key indicators 
●​ Anomaly detection for unexpected developments 
●​ Threshold alerts for critical variables 
●​ Escalation protocols for high-risk conditions 
●​ Automated briefing generation for rapid response 

While these tools extend beyond our initial scope, they represent natural expansions of our 
framework and methodology as the project matures. 

6. Theory of Change and Impact Assessment 

6.1 Direct Impact Pathways 

Our project creates impact through several distinct but complementary pathways, each targeting a 
critical leverage point in the AI governance ecosystem. 

Improving Research Allocation By making implicit models explicit and identifying key 
uncertainties, our tools help researchers prioritize their efforts more effectively. Specifically: 

●​ Technical alignment researchers can focus on aspects most critical for reducing existential 
risk 

●​ Governance researchers can identify policy levers with the highest expected impact 
●​ Forecasters can target questions with the greatest decision relevance 

If this improves research allocation efficiency even modestly across the field, the impact would be 
substantial given the high stakes and limited research resources. 

Enhancing Decision-Making for Policymakers For policymakers navigating complex AI 
governance questions, our tools provide: 

●​ Structured frameworks for assessing policy impacts across multiple scenarios 
●​ Explicit quantification of uncertainties and their implications 



●​ Comparison of different expert perspectives in a common language 
●​ Identification of robust interventions across worldviews 

We will engage directly with policy stakeholders through targeted briefings, workshops, and 
consultation sessions to ensure these tools inform actual governance decisions. 

Facilitating Coordination Across Domains Perhaps most importantly, our tools create a shared 
epistemic infrastructure that facilitates coordination: 

●​ Technical and governance researchers can more easily communicate through formal models 
●​ Different organizations can align their strategies based on shared understanding 
●​ Researchers across geographic and institutional boundaries can contribute to a common 

framework 
●​ Distinct philosophical perspectives can be represented within a unified system 

This coordination benefit scales superlinearly with adoption, as each additional participant increases 
the value of the system for all existing users. 

6.2 Expected Impact Quantification 

While precise quantification of impact remains challenging, we can provide reasonable estimates 
across several dimensions: 

Efficiency Gains in AI Governance Research 

●​ Current estimate: ~500 researchers working on AI governance globally 
●​ Average researcher cost: ~$150,000/year (salary + overhead) 
●​ Potential efficiency improvement through better coordination 
●​ Value: More effectively allocated research effort 

Value of Information from Improved Modeling 

●​ Baseline estimates of existential risk from expert surveys 
●​ Potential reduction through better governance 
●​ Value of this reduction: Enormous given the existential stake (8 billion lives + future 

generations) 
●​ Even with substantial uncertainty, the expected value is orders of magnitude higher than 

project costs 

Strategic Coordination Improvements 

●​ Current coordination challenges (duplicate efforts, misaligned initiatives) 
●​ Expected improvements through shared models 
●​ Value: More coordinated research and advocacy 

These estimates focus on immediate, measurable effects rather than long-term impacts on 
existential risk, which would yield much larger expected value calculations. 



6.3 Differential Advancement Considerations 

Any project in this domain must carefully consider potential risks of advancing certain types of 
knowledge or capabilities. We have conducted a thorough differential advancement assessment: 

Information Hazards and Mitigation Strategies Potential hazards: 

●​ Revealing vulnerabilities in existing governance approaches 
●​ Providing optimization targets for actors seeking to evade governance 
●​ Creating false confidence in flawed models 
●​ Accelerating technical capabilities through certain types of analysis 

Mitigation strategies: 

●​ Pre-publication review by information security experts 
●​ Graduated access to sensitive analytic capabilities 
●​ Focus on defensive applications rather than exploits 
●​ Explicit uncertainty representation to prevent overconfidence 
●​ Emphasis on governance rather than technical capabilities 

Data Governance and Privacy We will establish clear protocols for handling potentially sensitive 
insights extracted from world models, including anonymization where appropriate, tiered access 
controls for different stakeholder groups, and explicit policies regarding what information will be 
made public versus restricted. We will try to avoid handling sensitive data altogether, especially in 
the beginning phases of the project. 

Safeguards Against Misuse We will implement: 

●​ An ethics review process for all publications and tools 
●​ Terms of use prohibiting harmful applications 
●​ Monitoring for potential misuse of public tools 
●​ Technical safeguards preventing certain types of analysis 
●​ Consultation with security experts on release decisions 

Sensitive Forecast Handling For particularly sensitive forecasts: 

●​ Implement access controls based on need-to-know 
●​ Apply differential privacy techniques where appropriate 
●​ Aggregate information to prevent reverse engineering 
●​ Create secure environments for sensitive analysis 
●​ Establish clear guidelines for what information should be public vs. restricted 

Our general approach favors openness where possible, with restrictions only when specific, 
articulated risks outweigh the benefits of transparency. 

6.4 Dissemination Strategy 



Effective dissemination is critical for translating our research into real-world impact. Our strategy 
targets multiple channels: 

Publishing Approach We will disseminate our work through: 

●​ Academic papers in AI safety, ML, and governance venues 
●​ EA and rationality forums (LessWrong, Alignment Forum, EA Forum) 
●​ Interactive web platforms hosting our tools 
●​ Policy briefs tailored to specific stakeholder groups 
●​ Technical documentation for researchers and developers 

Each publication will be adapted to its specific audience while maintaining consistency in the 
underlying models and analyses. 

Stakeholder-Specific Communication We will develop targeted communications for: 

●​ Technical AI safety researchers: Emphasizing formal model details and validation 
●​ Governance researchers: Focusing on policy implications and intervention assessment 
●​ Policymakers: Highlighting actionable insights and decision support 
●​ General public: Providing accessible explanations of key concepts and concerns 
●​ Adjacent communities: Connecting our work to related fields and approaches 

This tailored approach ensures that our research reaches and influences the most relevant audiences. 

Community Building Initiatives Beyond publications, we will: 

●​ Host workshops on using our tools for research and analysis 
●​ Create tutorial materials for incorporating our approaches into existing workflows 
●​ Establish working groups focused on specific applications 
●​ Organize collaborative modeling sessions across organizations 
●​ Develop an online community around model development and refinement 

These initiatives build the human infrastructure necessary for long-term impact, creating a 
community of practice around our methodological approach. 

7. Implementation Timeline and Risk Management 

7.1 Phase-Based Development Approach 

Our implementation follows a carefully structured timeline with distinct phases, each building on 
previous work while allowing for parallel development of connected components. 

Phase 1: Foundation Development (Months 1-4) 

●​ Comprehensive literature review and stakeholder interviews (Month 1) 
●​ Technical infrastructure setup and Bayesian network design (Month 1-2) 
●​ Initial extraction system prototype development (Month 2-3) 
●​ Worldview extraction experiments (Month 3-4) 



●​ Internal testing and refinement (Month 4) 

Major Milestone: Working World Model Extraction Tool Prototype (End of Month 4) 

Phase 2: Core Tool Development (Months 5-8) 

●​ Expert feedback collection and incorporation (Month 5) 
●​ Worldview extraction system development (Month 5-6) 
●​ Prediction market API integration (Month 6-7) 
●​ Policy impact evaluation module development (Month 7-8) 
●​ Integration testing of all components (Month 8) 

Major Milestone: Integrated Tool Suite (End of Month 8) 

Phase 3: Scaling and Strategy Development (Months 9-12) 

●​ Public beta release and community testing (Month 9-10) 
●​ Automated world model extraction at scale (Month 10-11) 
●​ Strategic pattern identification (Month 10-11) 
●​ AI Grand Strategy framework development (Month 11-12) 
●​ Documentation and knowledge transfer (Month 12) 

Major Milestone: AI Grand Strategy Framework (End of Month 12) 

This timeline includes ~20% buffer time distributed across phases (with more buffer allocated to 
phases with higher uncertainty, particularly the automated extraction system development) to 
account for unexpected challenges and ensure quality deliverables. We've structured the 
development so that each phase produces valuable outputs even if subsequent phases encounter 
difficulties. The core team will be fully engaged throughout all phases, with Valentin Meyer leading 
the technical implementation aspects and Coleman Snell focusing on stakeholder engagement, 
validation, and strategic deployment. 

7.2 Key Risks and Mitigation Strategies 

We have identified several key risks to project success and developed specific mitigation strategies 
for each: 

Technical Risk: LLM Extraction Quality Insufficient 

●​ Risk level: Medium-High 
●​ Impact: Could significantly reduce the scale and accuracy of world model extraction 
●​ Mitigation: 

○​ Develop hybrid human-AI approaches that leverage LLMs while incorporating 
human oversight 

○​ Create structured templates to guide extraction and reduce ambiguity 
○​ Build a modular system where human input can substitute for automation where 

necessary 



○​ Continuously measure extraction quality and focus development on identified 
weaknesses 

Coordination Risk: Stakeholder Engagement Limitations 

●​ Risk level: Medium 
●​ Impact: Could reduce the uptake and influence of developed tools 
●​ Mitigation: 

○​ Conduct early user research to understand stakeholder needs and expectations 
○​ Create multiple interfaces with varying complexity for different user groups 
○​ Demonstrate concrete value through case studies of tool applications 
○​ Establish an advisory group of potential users to guide development priorities 

Resource Risk: Computational Requirements Exceed Budget 

●​ Risk level: Medium 
●​ Impact: Could limit the scale of model development and analysis 
●​ Mitigation: 

○​ Implement efficient algorithms that minimize computational requirements 
○​ Develop hierarchical approaches that allow focused analysis of critical subnetworks 
○​ Establish cloud computing partnerships or academic computing resource access 
○​ Prepare scaled-back implementations that preserve core functionality with reduced 

resources 

Epistemic Risk: Model Uncertainty Handling Challenges 

●​ Risk level: Medium-High 
●​ Impact: Could produce misleading results if uncertainty is inadequately represented 
●​ Mitigation: 

○​ Implement explicit uncertainty quantification for all model components 
○​ Develop sensitivity analysis tools to identify key uncertainties 
○​ Incorporate multiple expert perspectives to capture disagreement 
○​ Maintain transparency about limitations and simplifying assumptions 

Scope Risk: Feature Creep and Expansion 

●​ Risk level: High 
●​ Impact: Could dilute focus and prevent completion of core deliverables 
●​ Mitigation: 

○​ Implement strict scope management with explicit decision criteria 
○​ Prioritize core deliverables with clear definitions of completion 
○​ Create modular architecture where extensions can be developed independently 
○​ Establish a change control process requiring justification for scope modifications 

7.3 Early Stopping Criteria and Pivot Points 

We recognize that research often reveals unexpected challenges or opportunities. We've established 
clear criteria for when to consider early stopping or pivoting: 



After World Model Extraction Tool Development (Month 4) 

●​ Stop criteria: Feedback indicates limited additional value from scaling, or technical 
challenges prove more significant than anticipated 

●​ Deliverable: Working extraction tool with documentation and examples 
●​ Impact: Still provides valuable probabilistic modeling infrastructure 

After Initial Worldview Extraction System (Month 6) 

●​ Stop criteria: Automation proves fundamentally limited, or more promising approaches 
emerge elsewhere 

●​ Deliverable: Validated extraction methodology with examples and limitations 
documentation 

●​ Impact: Advances knowledge about LLM capabilities for knowledge extraction 

After Policy Evaluation Framework (Month 8) 

●​ Stop criteria: Full strategy development faces insurmountable challenges or higher-impact 
opportunities emerge 

●​ Deliverable: Framework for evaluating policy interventions with case studies 
●​ Impact: Provides valuable decision support tools for policymakers 

Each stopping point would still yield publishable results and useful tools, ensuring that research 
effort translates to value even if the full project scope proves unachievable. 

8. Team Composition and Capabilities 

8.1 Core Team Expertise 

Our team brings together precisely the interdisciplinary expertise needed for this complex project: 

Valentin Jakob Meyer 

●​ Expertise: Bayesian networks, probabilistic modeling, epistemology, forecasting theory 
●​ Experience: Extensive work implementing and analyzing Bayesian networks for complex 

decision problems, including directed acyclic graphs (DAGs) and probabilistic graphical 
models 

●​ Skills: Mathematical modeling, causal inference, uncertainty quantification 
●​ Relevance: These capabilities are directly applicable to the formal modeling framework at 

the heart of our approach 

Coleman Snell 

●​ Expertise: AI governance, ethics, strategic planning, community building 
●​ Experience: Research at AI:FAR, University of Chicago's X Risk Lab, and Cambridge's 

Center for the Study of Existential Risk (CSER) 
●​ Skills: Stakeholder engagement, policy analysis, science communication 



●​ Relevance: Ensures our technical tools connect to real-world governance needs and 
stakeholder requirements 

Together, our complementary backgrounds create a uniquely qualified team: 

●​ We bridge technical modeling and governance domains—a rare combination essential for 
this project 

●​ We have demonstrated ability to communicate complex technical concepts to diverse 
audiences 

●​ Our combined networks span the AI safety, governance, and forecasting communities 
●​ We each bring deep domain knowledge in complementary aspects of the project 

Previous Relevant Projects: 

●​ Conducted manual worldview extraction from influential AI safety papers 
●​ Developed prototype Bayesian network models for specific AI risk pathways 
●​ Published analyses of AI governance approaches in respected forums 
●​ Successfully implemented API integrations with prediction platforms 
●​ Designed and executed expert elicitation protocols for uncertainty quantification 

These experiences provide a strong foundation for the proposed work, demonstrating our ability to 
execute on both technical and strategic aspects of the project. 

8.2 Advisory Network and Collaborations 

Our work doesn't exist in isolation. We've established an advisory network and collaborations that 
strengthen our approach: 

Key Advisors 

●​ Names: Matthew Genzel, Sean Ó hÉigeartaigh, Johanne Meyer, Thomas Porter, and more 
names to be added later​
 

●​ Technical advisors: Experts in probabilistic modeling, causal inference, and LLMs​
 

●​ Domain advisors: Specialists in AI safety, governance, and forecasting​
 

●​ Implementation advisors: Professionals with experience developing similar tools​
 

Organizational Collaborations 

●​ MTAIR team members providing technical guidance and knowledge transfer 
●​ Forecasting platforms for data access and integration support 
●​ AI safety research organizations for domain expertise and validation 
●​ Academic institutions for computational resources and peer review 

Collaboration Mechanisms 



●​ Regular advisory board meetings for project oversight 
●​ Technical working groups for specific challenges 
●​ User testing panels for interface development 
●​ Expert elicitation protocols for model parameterization 

These collaborations multiply our impact by leveraging the expertise and resources of the broader 
ecosystem while ensuring our work remains connected to complementary efforts. 

8.3 Funding Efficiency 

We've designed this project to maximize impact per dollar through several efficiency mechanisms: 

Resource Allocation Optimization 

●​ Focus technical resources on automation components with highest leverage 
●​ Utilize existing open-source tools and libraries where possible 
●​ Implement cloud-based architecture to minimize infrastructure costs 
●​ Deploy graduated development allowing early value creation 

Comparative Impact Analysis Our expected impact per dollar compares favorably with 
alternatives: 

●​ Manual modeling approaches require ~5-10x more person-hours for similar coverage 
●​ Dedicated forecasting projects lack integration with causal models 
●​ Policy analysis without formal modeling provides less decision support 
●​ Technical AI safety work without governance connection lacks implementation pathways 

Leverage Points for Outsized Returns We've identified specific leverage points where funding 
creates disproportionate impact: 

●​ LLM automation creates scaling effects that multiply human capacity 
●​ Tool development generates ongoing value beyond the project timeframe 
●​ Integration across domains creates network effects in coordination 
●​ Strategic framework development enables alignment of much larger resources 

By focusing on these high-leverage opportunities, we maximize the return on the requested funding 
while creating sustainable value. 

9. Resource Requirements and Allocation 

9.1 Budget Breakdown and Justification 

Our project requires the following resources over its 12-month timeline: 

Personnel Costs (70% of total budget) 

●​ Core team compensation (2 FTE) 
○​ Includes salary, benefits, and taxes for two full-time researchers 



○​ Allocation: 40% technical development, 40% research, 20% stakeholder engagement 
●​ Expert consultations 

○​ Funds specialized expertise for validation, review, and technical advice 
○​ Allocation: 15-20 expert-days across the project timeline 

Technical Infrastructure (15% of total budget) 

●​ LLM API access 
○​ Covers costs for GPT-4, Claude, and other frontier model access 
○​ Estimated usage: ~10M tokens per month for extraction and analysis 

●​ Cloud computing resources 
○​ Supports computation for complex Bayesian networks and simulations 
○​ Includes development, staging, and production environments 

●​ Software and tools 
○​ Licenses for specialized modeling software (e.g., Analytica) 
○​ Development tools and services 

Community Engagement and Dissemination (10% of total budget) 

●​ Workshop and event organization 
○​ Facilitates expert engagement, feedback collection, and result dissemination 
○​ Includes virtual and in-person components 

●​ User interface design 
○​ Professional design services for key user interfaces 
○​ Ensures tools are accessible to target audiences 

●​ Publication and documentation 
○​ Covers production of research papers, technical documentation, and policy briefs 
○​ Includes editing, visualization, and distribution costs 

Contingency and Flexibility (5% of total budget) 

●​ Reserved for addressing unexpected challenges or opportunities 
●​ Enables rapid response to emerging needs or promising directions 

This budget has been carefully optimized to balance necessary resources with efficient allocation, 
ensuring every dollar directly contributes to project objectives. 

9.2 Alternative Funding Scenarios 

We recognize that funding availability may vary. We've developed alternative scenarios to 
accommodate different resource levels: 

Minimal Viable Funding 

●​ Core deliverables: 
○​ Basic extraction tool with manual assistance 
○​ Limited automation proof-of-concept 
○​ Simplified policy evaluation framework 



○​ 1-2 case studies demonstrating utility 
●​ Implementation approach: 

○​ Focus on methodological development over automation 
○​ Reduce scale of model complexity and coverage 
○​ Leverage more volunteer and community contributions 
○​ Prioritize academic outputs over tool development 

Optimal Funding 

●​ Core deliverables: 
○​ Comprehensive extraction system with full automation 
○​ Integrated forecasting platform connections 
○​ Complete policy evaluation framework 
○​ AI Grand Strategy with robust implementation pathways 
○​ Public-facing visualization tools 

●​ Implementation approach: 
○​ Fully develop all automation components 
○​ Maximize model coverage and complexity 
○​ Implement comprehensive validation protocols 
○​ Develop polished, user-friendly interfaces 
○​ Execute full stakeholder engagement strategy 

Expansion Opportunities With additional resources, we could extend the project to include: 

●​ Fine-tuning of LLMs specifically for causal extraction 
●​ Development of an open API for broader ecosystem integration 
●​ Creation of specialized tools for specific stakeholder groups 
●​ Establishment of a permanent update and maintenance infrastructure 
●​ International expansion with multi-language support 

These scenarios demonstrate our ability to adapt the project scope based on available resources 
while maintaining core impact pathways. 

9.3 Post-Grant Sustainability 

We have developed a strategy for ensuring the project's impact continues beyond the initial grant 
period: 

Long-term Maintenance and Updates 

●​ Open-source core components to enable community maintenance 
●​ Establish update protocols that can be executed with minimal resources 
●​ Create documentation enabling others to extend and adapt the tools 
●​ Design modular architecture allowing independent component evolution 

Institutional Adoption Pathways 

●​ Identify host organizations for long-term tool hosting 



●​ Develop transition plans for operational responsibility 
●​ Create institutional partnerships for ongoing development 
●​ Secure commitments for continued engagement from key stakeholders 

Open-Source Community Development 

●​ Build a contributor community during the project 
●​ Establish governance structures for community maintenance 
●​ Create contribution guidelines and documentation 
●​ Develop mentorship programs for new contributors 

Potential Follow-on Funding Sources 

●​ Identify specific outputs with dedicated funding opportunities 
●​ Prepare applications for sustainability grants 
●​ Explore institutional support from beneficiary organizations 
●​ Consider minimal service models for specialized applications 

Through these approaches, we ensure that the value created during the grant period continues to 
benefit the AI governance ecosystem long after the project formally concludes. 

 

We believe this proposal presents a compelling case for supporting the AMTAIR project. By 
addressing the critical coordination failure in AI governance through automated knowledge 
extraction and formalization, we can significantly enhance humanity's ability to navigate the 
unprecedented challenges posed by advanced AI systems. The tools and frameworks we develop 
will not only improve strategic decision-making but also create the epistemic infrastructure 
necessary for effective coordination at a critical moment in AI development. 

We welcome any opportunities to discuss this proposal in more detail and address any questions or 
concerns you may have. 
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