

Introduction

CLASS DIAGRAM

●​ The UML includes class diagrams to illustrate classes, interfaces, and
their associations. They are used for static object modeling.

●​ Used for static object modeling. It is used to depict the classes within a
model.

●​ It describes responsibilities of the system, it is used in forward and reverse
engineering

●​ Keywords used along with class name are {abstract, interface, actor}

Definition: Design Class Diagram

The class diagram can be used to visualize a domain model. we also need a unique
term to clarify when the class diagram is used in a software or design perspective. A
common modeling term for this purpose is design class diagram (DCD).

UML class diagrams in two

perspectives Domain

Model

Design Model

Class Diagram Representation

Class is represented as rectangular box showing class name, attributes , operations.

The main elements of class are

1​ Attributes
2​ Operations & Methods
3​ Relationship between classes

1.​Attributes (refer pg no 26)

An attribute is a logical data value of an object. Attributes of a classifier also called
structural properties in the UML. The full format of the attribute text notation is:

Syntax:

visibility name: type multiplicity = default {property-string}

visibility marks include + (public), - (private)

Examples:

different formats

-classOrStaticAttribute:int
+ publicAttribute : string
- privateAttribute
assumedPrivateAttribute
isIntializedAttribute : Bool = true
aCollection:VeggieBurger [*]
attributeMayLegallyBeNull : String[0..1]
finalConstantattribute : int = 5 { readonly}
/derivedAttribute

Guideline: Use the attribute text notation for data type objects and the association line
notation for others.

2.​Operations and Methods

Operations: One of the compartments of the UML class box shows the signatures of
operations. Assume the version that includes a return type. Operations are usually
assumed public if no visibility is shown. both expressions are possible

An operation is not a method. A UML operation is a declaration, with a name,
parameters, return type, exceptions list, and possibly a set of constraints of pre-and
post-conditions. methods are implementations.
Syntax:

visibility name (parameter-list): return-type {property-string}

Example:

UML

REPRESENTATION
+ getPlayer(name : String) : Player {exception IOException}

JAVA CODING public Player getPlayer(String name) throws IOException

To Show Methods in Class Diagrams:

A UML method is the implementation of an operation. A method may be illustrated
several ways, including:

●​ in interaction diagrams, by the details and sequence of messages
●​ in class diagrams, with a UML note symbol stereotyped with «method»

3.​Relationship between classes

There are different relationship exists between classes. They are

A.​ Association
B.​ Generalization & specialization
C.​ Composition and aggregation
D.​ Dependency

E.​ Interface realization

A)​Association (refer page no 21)

An association is a relationship between classes. The semantic relationship between
two or more classifiers that involve connections among their instances.

Example

For example, a single instance of a class can be associated with "many" (zero
or more, indicated by the *) Item instances.

B)​Generalization & Specialization

Generalization is the activity of identifying commonality among concepts and
defining superclass (general concept) and subclass (specialized concept)
relationships.
Ex1:

In the above example person is the generalized class and specialized classes are
student and professor
Ex2:

In the above example payment is the generalized class and specialized classes are
cash payment , credit payment and check payment .

C)​ Composition and Aggregation

Composition, also known as composite aggregation, is a strong kind of whole-part
aggregation and is useful to show in some models. A composition relationship
implies that

1)​ an instance of the part (such as a Square) belongs to only one composite
instance (such as one Board) at a time,
2)​the part must always belong to a composite (no free-floating Fingers)
3)​ the composite is responsible for the creation and deletion of its parts
either by itself creating/deleting the parts, or by collaborating with other objects.

Aggregation is a vague kind of association in the UML that loosely suggests
whole-part relationships .Aggregation implies a relationship where the child can
exist independently of the parent. Example: Class (parent) and Student (child).
Delete the Class and the Students still exist.

For example, a Department class can have an aggregation relationship with a
Company class, which indicates that the department is part of the company.
Aggregations are closely related to compositions.

D)​ Dependency

A general dependency relationship indicates that a client element (of any kind,
including classes, packages, use cases, and so on) has knowledge of another
supplier element and that a change in the supplier could affect the client.

Dependency can be viewed as another version of coupling, a traditional term
in software development when an element is coupled to or depends on another.

There are many kinds of dependency

●​ having an attribute of the supplier type
●​ sending a message to a supplier; the visibility to the supplier could be:

o an attribute, a parameter variable, a local variable, a global variable,
or class visibility (invoking static or class methods)

●​ receiving a parameter of the supplier type
●​ the supplier is a superclass or interface

E)​Interface realization

The UML provides several ways to show interface implementation, providing an
interface to clients, and interface dependency (a required interface). In the UML,
interface implementation is formally called interface realization

In the above example , Clock is the server program implementing Timer
interface giving Timer as the provided interface, window is the client program
with Timer

as required interface. The Timer interface contains the services provided by the
server object.

Qualified Association
A qualified association has a qualifier that is used to select an object (or objects) from a
larger set of related objects, based upon the qualifier key

Association Class
An association class allows you treat an association itself as a class, and model it
with attributes, operations, and other features. For example, if a Company employs
many Persons, modeled with an Employs association, you can model the association
itself as the Employment class, with attributes such as startDate.

ELABORATION

Elaboration is the initial series of iterations during which, on a normal project:

​​ the core, risky software architecture is programmed and tested
​​ the majority of requirements are discovered and stabilized
​​ the major risks are mitigated or retired
​​ Build the core architecture, resolve the high-risk elements, define most

requirements, and estimate the overall schedule and resources.
​​ Elaboration is the initial series of iterations during which the team does serious

investigation, implements (programs and tests) the core architecture, clarifies most
requirements, and tackles the high-risk issues.

​​ Elaboration often consists of two or more iterations; Each iteration is
recommended to be between two and six weeks; prefer the shorter versions
unless the team size is massive. Each iteration is time boxed, i.e its end date
is fixed.

​​ Elaboration is not a design phase or a phase when the models are fully
developed in preparation for implementation in the construction step that
would be an example of superimposing waterfall ideas on iterative
development and the UP.

​​ During this phase, no prototypes are created ; rather, the code and design are
production-quality portions of the final system.

​​ Architectural prototype means a production subset of the final system. More
commonly it is called the executable architecture or architectural baseline.

Key Ideas and Best Practices will manifest in elaboration:

​​ do short time boxed risk-driven iterations

​​ start programming early

​​ adaptively design, implement, and test the core and risky parts of the
architecture

​​ test early, often, realistically

​​ adapt based on feedback from tests, users, developers
​​ write most of the use cases and other requirements in detail, through a series

of workshops, once per elaboration iteration

Table -Sample elaboration artifacts, excluding those started in inception.

Artifact Comment

Domain Model This is a visualization of the domain concepts; it is similar to a static
information model of the domain entities.

Design Model

This is the set of diagrams that describes the logical design. This includes
software class diagrams, object interaction diagrams, package diagrams,
and so forth.

Software
Architecture
Document

A learning aid that summarizes the key architectural issues and their
resolution in the design. It is a summary of the outstanding design ideas
and their motivation in the system.

Data Model This includes the database schemas, and the mapping strategies between
object and non-object representations.

Use-Case
Storyboards, UI
Prototypes

A description of the user interface, paths of navigation, usability models,
and so forth.

 Process: Planning the Next Iteration

Organize requirements and iterations by risk, coverage, and criticality.
​​ Risk includes both technical complexity and other factors, such as

uncertainty of effort or usability.
​​ Coverage implies that all major parts of the system are at least touched on in

early iterations perhaps a "wide and shallow" implementation across many
components.

​​ Criticality refers to functions the client considers of high business value.

These criteria are used to rank work across iterations. Use cases or use case
scenarios are ranked for implementation early iterations implement high ranking
scenarios. The ranking is done before iteration-1, but then again before iteration-2,
and so forth, as new requirements and new insights influence the order.

For example:

Rank Requirement (Use Case or Feature) Comment

High Process Sale
Logging
…

Scores high on all
rankings. Pervasive. Hard
to add late.
…

Medium Maintain Users
…

Affects security sub domain.
…

Low … …

Based on this ranking, we see that some key architecturally
significant scenarios of the Process Sale use case should be tackled in early
iterations.

DOMAIN MODEL

 Domain Models

The figure shows a partial domain model drawn with UML class diagram
notation. It illustrates that the conceptual classes of Payment and Sale are significant
in this domain, that a Payment is related to a Sale in a way that is meaningful to
note, and that a Sale has a date and time, information attributes we care about.

Applying the UML class diagram notation for a domain model yields a

conceptual perspective model. Identifying a rich set of conceptual classes is at the
heart of OO analysis.

What is a Domain Model?
A domain model is a visual representation of conceptual classes or real-

situation objects in a domain . Domain models have also been called conceptual
models domain object models, and analysis object models.

Definition

In the UP, the term "Domain Model" means a representation of real-situation
conceptual classes, not of software objects. The term does not mean a set of
diagrams describing software classes, the domain layer of a software architecture, or
software objects with responsibilities.

A domain model is illustrated with a set of class diagrams in which no

operations (method signatures) are defined. It provides a conceptual perspective. It
may show:

​​ domain objects or conceptual classes

​​ associations between conceptual classes

​​ attributes of conceptual classes

Why Call a Domain Model a "Visual Dictionary"?

Domain Model visualizes and relates words or concepts in the domain. It
also shows an abstraction of the conceptual classes, because there are many other
things one could communicate about registers, sales, and so forth.

The domain model is a visual dictionary of the noteworthy abstractions, domain
vocabulary, and information content of the domain.

A UP Domain Model is a visualization of things in a real-situation domain of
interest, not of software objects such as Java or C# classes, or software objects with
responsibilities. Therefore, the following elements are not suitable in a domain
model:

​​ Software artifacts, such as a window or a database, unless the domain being

modeled are of software concepts, such as a model of graphical user
interfaces.

​​ Responsibilities or methods.

A domain model shows real –situation conceptual classes, not software classes
.

A domain model does not show software artifacts or classes

 Two Traditional Meaning of Domain Model

Meaning 1 :"Domain Model" is a conceptual perspective of objects in a real
situation of the world, not a software perspective.

Meaning 2 :"the domain layer of software objects." That is, the layer of software
objects below the presentation or UI layer that is composed of domain objects
software objects that represent things in the problem domain space with related
"business logic" or "domain logic" methods.

CONCEPTUAL CLASSES
A conceptual class is an idea, thing, or object. It may be considered in terms of its
symbol, intension, and extension (see Figure).

​​ Symbol words or images representing a conceptual class.

​​ Intension the definition of a conceptual class.
​​ Extension the set of examples to which the conceptual class applies.

For example, consider the conceptual class for the event of a purchase transaction. I
may choose to name it by the (English) symbol Sale. The intension of a Sale may
state that it "represents the event of a purchase transaction, and has a date and time."
The extension of Sale is all the examples of sales; in other words, the set of all sale
instances in the universe.

A conceptual class has a symbol, intension and extension Are

Domain and Data Models the Same Thing?
A domain model is not a data model (which by definition shows persistent data to
be stored somewhere), so do not exclude a class simply because the requirements
don't indicate any obvious need to remember information about it or because the
conceptual class has no attributes. For example, it's valid to have attribute less
conceptual classes, or conceptual classes that have a purely behavioral role in the
domain instead of an information role.

Motivation: Why Create a Domain Model ?
Lower Representational Gap with OO Modeling : This is a key idea in OO:
Use software class names in the domain layer inspired from names in the domain
model, with objects having domain-familiar information and responsibilities. This
supports a low representational gap between our mental and software models.

Lower Representational Gap with OO Modeling

Guideline: How to Create a Domain Model?
Bounded by the current iteration requirements under design:

1.​ Find the conceptual classes (see a following guideline).
2.​ Draw them as classes in a UML class diagram.
3.​ Add associations and attributes.

Guideline: To Find Conceptual Classes Three
Strategies to Find Conceptual Classes:

1.​ Reuse or modify existing models. This is the first, best, and usually easiest
approach. There are published, well-crafted domain models and data models
for many common domains, such as inventory, finance, health, and so forth.

2.​ Use a category list. (Method 2)
3.​ Identify noun phrases. (Method 3)

Method 2: Use a Category List
We can create a domain model by making a list of candidate conceptual classes. The
guidelines also suggest some priorities in the analysis. Examples are drawn from the
1) POS, 2) Monopoly game 3) airline reservation domains.

Table - Conceptual Class Category List.

Conceptual Class Category Examples

business transactions

Guideline: These are critical (they involve
money), so start with transactions.

Sale,
Payment
Reservation

transaction line items

Guideline: Transactions often come with related
line items, so consider these next.

SalesLineItem

product or service related to a transaction or
transaction line item

Guideline:​ Transactions​ are​ for​ something​
(a product or service). Consider these next.

Item

Flight, Seat, Meal

where is the transaction recorded?

Guideline: Important.

Register, Ledger

FlightManifest

roles of people or organizations related to the
transaction; actors in the use case

Guideline: We usually need to know about the
parties involved in a transaction.

Cashier, Customer, Store
MonopolyPlayer
Passenger, Airline

place of transaction; place of service Store

Airport, Plane, Seat

noteworthy events, often with a time or place
we need to remember

Sale,​ Payment
Monopoly Game Flight

physical objects

Guideline: This is especially relevant when creating
device-control software, or simulations.

Item,​ Register​
Board, Piece, Die Airplane

descriptions of things Product Description

Flight Description

Guideline: Descriptions are often in a catalog. Product Catalog

Flight Catalog

containers of things (physical or information) Store, Bin Board Airplane

Table - Conceptual Class Category List.

Conceptual Class Category Examples

things in a container Item Square (in a Board)
Passenger

other collaborating systems CreditAuthorizationSystem

AirTrafficControl

records of finance, work, contracts, legal matters Receipt, Ledger

Maintenance Log

financial instruments Cash, Check, LineOfCredit

Ticket Credit

schedules, manuals, documents that are regularly
referred to in order to perform work

DailyPriceChangeList

Repair Schedule

Method 3: Finding Conceptual Classes with Noun Phrase Identification

Another useful technique (because of its simplicity) suggested is linguistic
analysis: Identify the nouns and noun phrases in textual descriptions of a domain,
and consider them as candidate conceptual classes or attributes.

Guideline

Linguistic analysis has become more sophisticated; it also goes by the name natural
language modeling. for example, the current scenario of the Process Sale use case
can be used.

Main Success Scenario (or Basic Flow):

1.​ Customer arrives at a POS checkout with goods and/or services to

purchase.
2.​ Cashier starts a new sale.
3.​ Cashier enters item identifier.
4.​ System records sale line item and presents item description, price, and

running total. Price calculated from a set of price rules.

Underlined words are nouns. The next level of scrutiny derives class names.

 Example: Find and Draw Conceptual Classes

Case Study: POS Domain

From the category list and noun phrase analysis, a list is generated of
candidate conceptual classes for the domain. There is no such thing as a "correct"
list. It is a somewhat arbitrary collection of abstractions and domain vocabulary

Initial POS domain model.

Guidelines

1.​ Agile Modeling Sketching a Class Diagram: The sketching style in the
UML class diagram is to keep the bottom and right sides of the class boxes open.
This makes it easier to grow the classes as we discover new elements.

2.​ Agile Modeling Maintain the Model in a Tool? The purpose of creating a
domain model is to quickly understand and communicate a rough approximation of
the key concepts.

3.​ Report Objects - Include 'Receipt' in the Model? Receipt is a term in the
POS domain. But it's only a report of a sale and payment, and thus duplicate
information.

4.​Use Domain Terms:
Make a domain model in the spirit of how a cartographer or mapmaker works:

●​ Use the existing names in the territory. For example, if developing a model
for a library, name the customer a "Borrower" or "Patron" the terms used by
the library staff.

●​ Exclude irrelevant or out-of-scope features. For example, in the Monopoly
domain model for iteration-1

●​ Do not add things that are not there.

5.​ How to Model the Unreal World? Some software systems are for domains

that find very little analogy in natural or business domains; software for

telecommunications is an example. For example, here are candidate conceptual
classes related to the domain of a telecommunication switch: Message, Connection,
Port, Dialog, Route, and Protocol.

6.​ A Common Mistake with Attributes vs. Classes If we do not think of some
conceptual class X as a number or text in the real world, X is probably a conceptual
class, not an attribute. As an example, should store be an attribute of Sale, or a
separate conceptual class Store?

In the real world, a store is not considered a number or text the term suggests
a legal entity, an organization, and something that occupies space. Therefore, Store
should be a conceptual class.

As another example, consider the domain of airline reservations. Should

destination be an attribute of Flight, or a separate conceptual class Airport?

In the real world, a destination airport is not considered a number or text-it is

a massive thing that occupies space. Therefore, Airport should be a concept.

7 When to Model with 'Description' Classes? A description class contains
information that describes something else. For example, a Product Description that
records the price, picture, and text description of an Item.

Motivation: Why Use 'Description' Classes? The need for description classes is
common in many domain models. The need for description classes is common in
sales, product, and service domains. It is also common in manufacturing, which
requires a description of a manufactured thing that is distinct from the thing itself
Figure. Descriptions about other things. The * means a multiplicity of "many." It
indicates that one Product Description may describe many (*) Items.

When Are Description Classes Useful?

Add a description class (for example, Product Description) when:
●​ There needs to be a description about an item or service, independent of the

current existence of any examples of those items or services.
●​ Deleting instances of things, they describe (for example, Item) results in a

loss of information that needs to be maintained, but was incorrectly
associated with the deleted thing.

●​ It reduces redundant or duplicated information.

Example: Descriptions in the Airline Domain
As another example, consider an airline company that suffers a fatal crash of

one of its planes. Assume that all the flights are cancelled for six months pending
completion of an investigation. Also assume that when flights are cancelled, their
corresponding Flight software objects are deleted from computer memory.
Therefore, after the crash, all Flight software objects are deleted.

If the only record of what airport a flight goes to is in the Flight software

instances, which represent specific flights for a particular date and time, then there
is no longer a record of what flight routes the airline has The problem can be solved,
both from a purely conceptual perspective in a domain model and from a software
perspective in the software designs, with a Flight Description that describes a flight
and its route, even when a particular flight is not scheduled in following figure

Descriptions about other things.

Note that the prior example is about a service (a flight) rather than a good.
Descriptions of services or service plans are commonly needed.

 Associations

An association is a relationship between classes (more precisely, instances of
those classes) that indicates some meaningful and interesting connection (see
Figure)

In the UML, associations are defined as "the semantic relationship between

two or more classifiers that involve connections among their instances."

 Include the following associations in a domain model:

●​ Associations for which knowledge of the relationship needs to be
preserved for some duration ("need-to-remember" associations).

●​ Associations derived from the Common Associations List.

Guideline 1. Avoid Adding Many Associations

●​ We need to avoid adding too many associations to a domain model. In a
graph with n nodes, there can be (n·(n-1))/2 associations to other nodes-a
potentially very large number. A domain model with 20 classes could have
190 associations lines!

●​ During domain modeling, an association is not a statement about data flows,
database foreign key relationships, instance variables, or object connections
in a software solution; it is a statement that a relationship is meaningful in a
purely conceptual perspective-in the real domain.

Applying UML: Association Notation

An association is represented as a line between classes with a capitalized
association name. See Figure

The UML notation for associations.

The ends of an association may contain a multiplicity expression indicating
the numerical relationship between instances of the classes.

The association is inherently bidirectional, meaning that from instances of

either class, logical traversal to the other is possible. This traversal is purely
abstract; it is not a statement about connections between software entities.

An optional "reading direction arrow" indicates the direction to read the

association name; it does not indicate direction of visibility or navigation. If the
arrow is not present, the convention is to read the association from left to right or
top to bottom.

Guideline 2: To Name an Association in UML
Name an association based on a ClassName-VerbPhrase - ClassName format where
the verb phrase creates a sequence that is readable and meaningful. Simple
association names such as "Has" or "Uses" are usually poor, as they seldom enhance
our understanding of the domain.

For example,

●​ Sale Paid-by CashPayment

o​ bad example (doesn't enhance meaning): Sale Uses CashPayment
●​ Player Is-on Square

o​ bad example (doesn't enhance meaning): Player Has Square

Association names should start with a capital letter, since an association
represents a classifier of links between instances; in the UML, classifiers should
start with a capital letter.

Applying UML: Roles
Each end of an association is called a role. Roles may optionally have:

●​ multiplicity expression
●​ name
●​ navigability

Applying UML: Multiplicity

Multiplicity defines how many instances of a class A can be associated with

one instance of a class B

Multiplicity on an association.

For example, a single instance of a Store can be associated with "many"
(zero or more, indicated by the *) Item instances.

Multiplicity values.

Applying UML: Multiple Associations Between Two Classes

The domain of the airline is the relationships between a Flight and an Airport

the flying-to and flying-from associations are distinctly different relationships,
which should be shown separately.

Multiple associations.

Guideline 3 : To Find Associations with a Common Associations List

Start the addition of associations by using the list in Table . It contains
common categories that are worth considering, especially for business information
systems. Examples are drawn from the 1) POS, 2) Monopoly, and 3) airline
reservation domains.

Table - Common Associations List.

Category Examples

A is a transaction related to another
transaction B

CashPaymentSale CancellationReservation

A is a line item of a transaction B SalesLineItemSale

Category Examples

A is a product or service for a transaction
(or line item) B

ItemSalesLineItem(or Sale)FlightReservation

A is a role related to a transaction B CustomerPayment PassengerTicket

A is a physical or logical part of B DrawerRegister SquareBoard

SeatAirplane

A is physically or logically contained in/on B RegisterStore, ItemShelf

SquareBoard PassengerAirplane

A is a description for B ProductDescriptionItem FlightDescriptionFlight

A is known / logged / recorded / reported /
captured in B

SaleRegister PieceSquare
ReservationFlightManifest

A is a member of B CashierStore PlayerMonopolyGame

PilotAirline

A is an organizational subunit of B DepartmentStore MaintenanceAirline

A uses or manages or owns B CashierRegister PlayerPiece PilotAirplane

A is next to B SalesLineItemSalesLineItem

SquareSquare CityCity

Roles as Concepts versus Roles in Associations: In a domain model, a real-world
role especially a human role may be modeled in a number of ways, such as a
discrete concept, or expressed as a role in an association. For example, the role of
cashier and manager may be expressed in at least the two ways illustrated in Fig

Reflexive Associations: A concept may have an association to itself; this is known
as a reflexive association

Example: Associations in the Domain Models

Case Study: NextGen POS: The domain model in Figure shows a set of
conceptual classes and associations that are candidates for our POS domain model.
The associations are primarily derived from the "need-to-remember" criteria of
these iteration requirements, and the Common Association List. For example:

●​ Transactions related to another transaction Sale Paid-by Cash Payment.
●​ Line items of a transaction Sale Contains SalesLineItem.
●​ Product for a transaction (or line item) SalesLineItem Records-sale-of Item.

NextGen POS partial domain model.

 Attributes: An attribute is a logical data value of an object. Include attributes that
the requirements (for example, use cases) suggest or imply a need to remember
information. For example, a receipt (which reports the information of a sale) in the
Process Sale use case normally includes Therefore,

●​ Sale needs a date Time attribute.
●​ Store needs a name and address.
●​ Cashier needs an ID.

Applying UML- Attribute Notation: Attributes are shown in the second
compartment of the class box. Their type and other information may optionally be
shown.

Class and attributes.

More Notation

The full syntax for an attribute in the UML is:

visibility name: type multiplicity = default {property-string}

Some common examples are shown in Fig

Attribute notation in UML.

{readOnly} is probably the most common property string for attributes.

Multiplicity can be used to indicate the optional presence of a value, or the
number of objects that can fill a (collection) attribute.

Derived Attributes: When we want to communicate that 1) this is a noteworthy
attribute, but 2) it is derivable, we use the UML convention: a / symbol before the
attribute name.

Guideline 1: Suitable Attribute Types - Focus on Data Type Attributes in the
Domain Model

Most attribute types should be what are often thought of as "primitive" data

types, such as numbers and Booleans. For example, the current Register attribute in
the Cashier class in Figure is undesirable because its type is meant to be a Register,
which is not a simple data type (such as Number or String).

Relate with associations, not attributes

Guideline: The attributes in a domain model should preferably be data types. Very
common data types include: Boolean, Date (or Date Time), Number, Character,
String (Text), Time. Other common types include: Address, Color, Geometrics
(Point, Rectangle), Phone Number, Social Security Number, Universal Product
Code (UPC), SKU, ZIP or postal codes, enumerated types

A common confusion is modeling a complex domain concept as an attribute. To
illustrate, a destination airport is not really a string; it is a complex thing that
occupies many square kilometers of space. Therefore, Flight should be related to
Airport via an association, not with an attribute, as shown in Fig.

Don't show complex concepts as attributes; use associations.

Guideline : Relate conceptual classes with an association, not with an attribute.

Data Types

Attributes in the domain model should generally be data types; informally
these are "primitive" types such as number, boolean, character, string, and
enumerations (such as Size = {small, large}).

For example, it is not (usually) meaningful to distinguish between:

●​ Separate instances of the Integer 5.
●​ Separate instances of the String 'cat'.
●​ Separate instance of the Date "Nov. 13, 1990".

Guideline 1: When to define New Data type Classes?

Guidelines for modeling data types

Represent what may initially be considered a number or string as a new data type
class in the domain model if:

●​ It is composed of separate sections. –Ex phone number, name of person
●​ There are operations associated with it, such as parsing or validation. - social

security number
●​ It has other attributes. - promotional price could have a start (effective)

date and end date
●​ It is a quantity with a unit. - payment amount has a unit of currency
●​ It is an abstraction of one or more types with some of these qualities.

Item identifier in the sales domain is a generalization of types such as Universal
Product Code (UPC) and European Article Number (EAN)

Applying these guidelines to the POS domain model attributes yields the following
analysis:

●​ The item identifier is an abstraction of various common coding schemes,

including UPC-A, UPC-E, and the family of EAN schemes. These numeric
coding schemes have subparts identifying the manufacturer, product, country
(for EAN), and a check-sum digit for validation. Therefore, there should be a
data type ItemID class, because it satisfies many of the guidelines above.

●​ The price and amount attributes should be a data type Money class
because they are quantities in a unit of currency.

●​ The address attribute should be a data type Address class because it
has separate sections.

Applying UML: Where to Illustrate These Data Type Classes?

Two ways to indicate a data type property of an object.

Should the ItemID class be shown as a separate class in a domain model? Since
ItemID is a data type (unique identity of instances is not used for equality testing), it
may be shown only in the attribute compartment of the class box, as shown in above
Figure. On the other hand, if ItemID is a new type with its own attributes and
associations, showing it as a conceptual class in its own box may be informative.

Guideline 2: No Attributes Representing Foreign Keys

In Following Fig, the currentRegisterNumber attribute in the Cashier class is
undesirable because its purpose is to relate the Cashier to a Register object. The

better way to express that a Cashier uses a Register is with an association, not with a
foreign key attribute.

Do not use attributes as foreign keys.

Guideline 3 : Modeling Quantities and Units
Most numeric quantities should not be represented as plain numbers. Consider price
or weight. These are quantities with associated units, and it is common to require
knowledge of the unit to support conversions.

Modeling quantities.

Example: Attributes in the Domain Models -Case Study: NextGen POS

See following Fig. The attributes chosen reflect the information requirements
for this iteration the Process Sale cash-only scenarios of this iteration. For
example:

CashPayment amountTendered to determine if sufficient payment was provided, and

to calculate change, an amount (also known as "amount tendered") must
be captured.

Cash Payment amount Tendered to determine if sufficient payment was provided, and

to calculate change, an amount (also known as "amount tendered") must
be captured.

Product-
Description

description to show the description on a display or receipt.

itemId to look up a Product Description.

price to calculate the sales total, and show the line-item price.

Sale date Time A receipt normally shows date and time of sale, and this
is useful for sales analysis.

SalesLineItem quantity to record the quantity entered, when there is more than one
item in a line-item sale (for example, five packages of tofu).

Store address, name the receipt requires the name and address of the store.

NextGen POS partial domain model.

DOMAIN MODEL REFINEMENT

OBJECTIVES

●​ Refine the domain model with generalizations, specializations, association
classes, time intervals, composition, and packages.

●​ Generalization and specialization are fundamental concepts in
domain modeling that support an economy of expression;

●​ Association classes capture information about an association itself.
●​ Time intervals capture the important concept that some business objects

are valid for a limited time.
●​ Packages are a way to organize large domain models into smaller units.

Concepts Category List : This Table shows some concepts being considered in
this iteration.

Category Examples
physical or tangible objects CreditCard, Check

Transactions CashPayment, CreditPayment,
CheckPayment

other computer or
electro-mechanical systems external
to our system

CreditAuthorizationService,
CheckAuthorizationService

abstract noun concepts

Organizations CreditAuthorizationService,
CheckAuthorizationService

records of finance, work, contracts, legal
matters

AccountsReceivable

Generalization

The concepts CashPayment, CreditPayment, and CheckPayment are all very
similar. In this situation, it is possible (and useful) to organize them (as in following
Figure) into a generalization-specialization class hierarchy (or simply class
hierarchy) in which the super class Payment represents a more general concept,
and the subclasses more specialized ones.

Generalization-specialization hierarchy.

Generalization is the activity of identifying commonality among concepts
and defining superclass (general concept) and subclass (specialized concept)
relationships. Identifying a superclass and subclasses is of value in a domain model
because their presence allows us to understand concepts in more general, refined
and abstract terms.

Guideline : Identify domain superclasses and subclasses relevant to the current
iteration, and illustrate them in the Domain Model.

Class hierarchy with separate and shared arrow notations.

Defining Conceptual Super classes and Subclasses :

Definition : A conceptual super class definition is more general or
encompassing than a subclass definition.

For example, consider the superclass Payment and its subclasses (Cash

Payment, and so on). Assume the definition of Payment is that it represents the
transaction of transferring money (not necessarily cash) for a purchase from one
party to another, and that all payments have an amount of money transferred. The
model corresponding to this is shown in following Figure.

Payment class hierarchy.

A Credit Payment is a transfer of money via a credit institution which needs
to be authorized. My definition of Payment encompasses and is more general than
my definition of Credit Payment.

Definition: All members of a conceptual subclass set are members of their
superclass set. For example, in terms of set membership, all instances of the set
Credit Payment are also members of the set Payment. In a Venn diagram, this is
shown as in following Fig

Venn diagram of set relationships.

Conceptual Subclass Definition Conformance: When a class hierarchy is created,
statements about super classes that apply to subclasses are made. For example, the
following Figure states that all Payments have an amount and are associated with a
Sale.

Subclass conformance.

Guideline: 100% Rule
100% of the conceptual superclass's definition should be applicable to the

subclass. The subclass must conform to 100% of the superclass's:
●​ attributes
●​ associations

Conceptual Subclass Set Conformance:​ A conceptual subclass should be a
member of the set of the superclass. Thus, Credit Payment should be a member of
the set of Payments.

Guideline: Is-a Rule
All the members of a subclass set must be members of their superclass set.

In natural language, this can usually be informally tested by forming

the statement: Subclass is a Superclass.

Guideline: Correct Conceptual Subclass
A potential subclass should conform to the:

●​ 100% Rule (definition conformance)
●​ Is-a Rule (set membership conformance)

When to Define a Conceptual Subclass?

Definition: A conceptual class partition is a division of a conceptual class into
disjoint subclasses. For example, in the POS domain, Customer may be correctly
partitioned (or subclassed) into Male Customer and Female Customer. But is it
relevant or useful to show this in our model (see following figure)? This partition is
not useful for our domain; the next section explains why

Legal conceptual class partition, but is it useful in our domain

Motivations to Partition a Conceptual Class into Subclasses

Create a conceptual subclass of a superclass when:

1.​ The subclass has additional attributes of interest.
2.​ The subclass has additional associations of interest.
3.​ The subclass concept is operated on, handled, reacted to, or

manipulated differently than the superclass or other subclasses, in ways
that are of interest.

4.​ The subclass concept represents an animate thing (for example, animal,
robot) that behaves differently than the superclass or other subclasses, in
ways that are of interest.

Based on the above criteria, it is not compelling to partition Customer into the
subclasses Male Customer and Female Customer because they have no additional
attributes or associations, are not operated on (treated) differently, and do not
behave differently in ways that are of interest . This table shows some examples of
class partitions from the domain of payments and other areas, using these criteria

Example subclass partitions

Conceptual Subclass Motivation Examples

The subclass has additional attributes of
interest.

Payments not applicable.Library Book, subclass
of LoanableResource, has an ISBN attribute.

Conceptual Subclass Motivation Examples

The subclass has additional
associations of interest.

Payments CreditPayment, subclass of Payment,
is associated with a CreditCard.
Library Video, subclass of LoanableResource, is
associated with Director.

The subclass concept is operated upon,
handled, reacted to, or manipulated
differently than the superclass or other
subclasses, in ways that are of interest.

Payments CreditPayment, subclass of Payment,
is handled differently than other kinds of
payments in how it is authorized.
Library Software, subclass of LoanableResource,
requires a deposit before it may be loaned.

The subclass concept represents an
animate thing (for example, animal,
robot) that behaves differently than the
superclass or other subclasses, in ways
that are of interest.

Payments not applicable.
Library not applicable.
Market Research MaleHuman, subclass of
Human, behaves differently than
FemaleHuman with respect to shopping habits.

When to Define a Conceptual Superclass?

Motivations to generalize and define a superclass: Guideline
Create a superclass in a generalization relationship to subclasses when:

●​ The potential conceptual subclasses represent variations of a similar concept.
●​ The subclasses will conform to the 100% and Is-a rules.
●​ All subclasses have the same attribute that can be factored out and expressed

in the superclass.
●​ All subclasses have the same association that can be factored out and related

to the superclass.

NextGen POS Conceptual Class Hierarchies

Justifying Payment subclasses.

Payment Classes: Based on the above criteria for partitioning the Payment class, it
is useful to create a class hierarchy of various kinds of payments. The justification
for the superclass and subclasses is shown in Figure.

Authorization Service Classes: Credit and check authorization services are
variations on a similar concept, and have common attributes of interest. This leads
to the class hierarchy in following Figure.

Justifying the Authorization Service hierarchy

Abstract Conceptual Classes

Definition: If every member of a class C must also be a member of a subclass, then
class C is called an abstract conceptual class. For example, assume that every
Payment instance must more specifically be an instance of the subclass Credit
Payment, Cash Payment, or Check Payment. This is illustrated in the Venn diagram
of Figure (b). Since every Payment member is also a member of a subclass,
Payment is an abstract conceptual class by definition.

Abstract conceptual classes.

Abstract Class Notation in the UML: To review, the UML provides a notation to
indicate abstract classes the class name is italicized

Abstract class notation.

Guideline : Identify abstract classes and illustrate them with an italicized name in
the Domain Model, or use the {abstract} keyword.

Modeling Changing States

Assume that a payment can either be in an unauthorized or authorized state, and it
is meaningful to show this in the domain model. As shown in Figure, one modeling
approach is to define subclasses of Payment: Unauthorized Payment and Authorized
Payment.

Guideline: Do not model the states of a concept X as subclasses of X. Rather, either:

●​ Define a state hierarchy and associate the states with X, or
●​ Ignore showing the states of a concept in the domain model; show the states in state

-diagrams instead.

Modeling changing states.

Association Classes

The following domain requirements set the stage for association classes:

●​ Authorization services assign a merchant ID to each store for
identification during communications.

●​ A payment authorization request from the store to an authorization
service needs the merchant ID that identifies the store to the service.

●​ Furthermore, a store has a different merchant ID for each service.

Placing merchantID in Store is incorrect because a Store can have more than one
value for merchantID. The same is true with placing it in Authorization Service (see
Figure).

Inappropriate use of an attribute.

Guideline: In a domain model, if a class C can simultaneously have many values
for the same kind of attribute A, do not place attribute A in C. Place attribute A in
another class that is associated with C.

For example:

●​ A Person may have many phone numbers. Place phone number in another

class, such as Phone Number or Contact Information, and associate many of
these to Person.

First attempt at modeling the merchantID problem.

The fact that both Store and Authorization Service are related to Service
Contract is a clue that it is dependent on the relationship between the two. The
merchantID may be thought of as an attribute related to the association between
Store and Authorization Service.

This leads to the notion of an association class, in which we can add features

to the association itself. Service Contract may be modeled as an association class
related to the association between Store and Authorization Service.

.

An association class

Guideline: Clues that an association class might be useful in a domain model:

●​ An attribute is related to an association.
●​ Instances of the association class have a lifetime dependency on

the association.
●​ There is a many-to-many association between two concepts and

information associated with the association itself.

AGGREGATION AND COMPOSITION

How to Identify Composition: Guideline

Consider showing composition when:

●​ The lifetime of the part is bound within the lifetime of the composite there
is a create-delete dependency of the part on the whole.

●​ There is an obvious whole-part physical or logical assembly.
●​ Some properties of the composite propagate to the parts, such as the location.
●​ Operations applied to the composite propagate to the parts, such

as destruction, movement, and recording.

Composition in the NextGen Domain Model

In the POS domain, the SalesLineItems may be considered a part of a composite
Sale;

Aggregation in the point-of-sale application.

SYSTEM SEQUENCE DIAGRAMS

Use cases describe how external actors interact with the software system we
are interested in creating. During this interaction an actor generates system events to
a system, usually requesting some system operation to handle the event.

For example, when a cashier enters an item's ID, the cashier is requesting the

POS system to record that item's sale (the enter Item event). That event initiates an
operation upon the system. The use case text implies the enter Item event, and the
SSD makes it concrete and explicit.

A system sequence diagram is a picture that shows, for one particular

scenario of a use case, the events that external actors generate their order, and inter-
system events. All systems are treated as a black box.

Guideline: Draw an SSD for a main success scenario of each use case, and
frequent or complex alternative scenarios.

SSD for a Process Sale scenario.

Why Draw an SSD?

A software system reacts to three things:

1)​external events from actors (humans or computers),
2)​timer events,
3)​faults or exceptions (which are often from external sources).

Therefore, it is useful to know what, precisely, are the external input events

the system events. They are an important part of analyzing system behavior.

System behavior is a description of what a system does, without explaining
how it does it. One part of that description is a system sequence diagram.

 RELATIONSHIP BETWEEN SSDS AND USE CASES

An SSD shows system events for one scenario of a use case; therefore, it
is generated from inspection of a use case (see Figure below).

SSDs are derived from use cases; they show one scenario.

How to Name System Events and Operations?

Which is better, scan(itemID) or enterItem(itemID)?

System events should be expressed at the abstract level of intention rather
than in terms of the physical input device.

Thus "enterItem" is better than "scan" (that is, laser scan) because it captures

the intent of the operation while remaining abstract and noncommittal with respect
to design choices about what interface is used to capture the system event.

Choose event and operation names at an abstract level.

 Example: Monopoly SSD

The Play Monopoly Game use case is simple, as is the main scenario. The
observing person initializes with the number of players, and then requests the
simulation of play, watching a trace of the output until there is a winner.

SSD for a Play Monopoly Game scenario.

Process:
Draw SSDs only for the scenarios chosen for the next iteration. Don't create

SSDs for all scenarios, unless you are using an estimation technique that requires
identification of all system operations.

WHEN TO USE CLASS DIAGRAMS

Class diagram is a static diagram and it is used to model the static view of a
system. The static view describes the vocabulary of the system.

Class diagram is also considered as the foundation for component and deployment
diagrams. Class diagrams are not only used to visualize the static view of the
system

but they are also used to construct the executable code for forward and reverse
engineering of any system.

Class diagram clearly shows the mapping with object-oriented languages such as
Java, C++, etc. From practical experience, class diagram is generally used for
construction purpose.

Class Diagrams are used for −

●​ Describing the static view of the system.
●​ Showing the collaboration among the elements of the static view.
●​ Describing the functionalities performed by the system.
●​ Construction of software applications using object-oriented languages.
●​ Forward and reverse engineering.

Ex: Order Processing System

	CLASS DIAGRAM
	Definition: Design Class Diagram
	Class Diagram Representation
	1.​Attributes (refer pg no 26)
	Syntax:
	Syntax:
	A)​Association (refer page no 21)
	B)​Generalization & Specialization
	Ex1:
	Ex2:
	C)​Composition and Aggregation
	D)​Dependency
	E)​Interface realization
	Qualified Association

	ELABORATION
	Elaboration is the initial series of iterations during which, on a normal project:
	Key Ideas and Best Practices will manifest in elaboration:
	 Process: Planning the Next Iteration

	DOMAIN MODEL
	 Domain Models
	What is a Domain Model?
	Definition
	Why Call a Domain Model a "Visual Dictionary"?
	 Two Traditional Meaning of Domain Model

	CONCEPTUAL CLASSES
	A conceptual class has a symbol, intension and extension Are Domain and Data Models the Same Thing?
	Motivation: Why Create a Domain Model ?
	Guideline: To Find Conceptual Classes Three Strategies to Find Conceptual Classes:
	Method 2: Use a Category List
	Method 3: Finding Conceptual Classes with Noun Phrase Identification
	Guideline
	Main Success Scenario (or Basic Flow):
	 Example: Find and Draw Conceptual Classes
	Guidelines
	4.​Use Domain Terms:
	When Are Description Classes Useful?
	Example: Descriptions in the Airline Domain
	 Associations
	 Include the following associations in a domain model:
	Guideline 1. Avoid Adding Many Associations
	Applying UML: Association Notation
	The UML notation for associations.
	Guideline 2: To Name an Association in UML
	Applying UML: Roles
	Applying UML: Multiplicity
	Applying UML: Multiple Associations Between Two Classes
	Guideline 3 : To Find Associations with a Common Associations List
	
	Example: Associations in the Domain Models
	More Notation
	visibility name: type multiplicity = default {property-string}
	Guideline 1: Suitable Attribute Types - Focus on Data Type Attributes in the Domain Model
	Data Types
	Guideline 1: When to define New Data type Classes? Guidelines for modeling data types
	Guideline 2: No Attributes Representing Foreign Keys
	Guideline 3 : Modeling Quantities and Units

	DOMAIN MODEL REFINEMENT
	OBJECTIVES
	Generalization
	Defining Conceptual Super classes and Subclasses :
	Subclass conformance.
	Guideline: Is-a Rule
	Guideline: Correct Conceptual Subclass
	When to Define a Conceptual Subclass?
	Motivations to Partition a Conceptual Class into Subclasses
	When to Define a Conceptual Superclass?
	NextGen POS Conceptual Class Hierarchies
	Abstract Conceptual Classes
	Association Classes

	AGGREGATION AND COMPOSITION
	How to Identify Composition: Guideline
	Composition in the NextGen Domain Model

	SYSTEM SEQUENCE DIAGRAMS
	Why Draw an SSD?

	 RELATIONSHIP BETWEEN SSDS AND USE CASES
	How to Name System Events and Operations?
	 Example: Monopoly SSD
	Process:

