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2017 Exam Topics 
1. Definitions 
2. Greedy Algorithms 
3. Dynamic Programming 
4. Approximation & Probabilistic Algorithms (20 marks) 
5. Guest lectures its 10 marks, he already mentioned it in the lecture 
 
"there may be any topic up until the lecture by Mark Moir", e.g. linear 
programming could come up in definitions 
 
First 3 easier, #4 on the harder side, no really hard question like 2016. All 
relatively solveable. 

 

 

 

 



 
 

Definitions Section 
This is a laundry list of things which I think might come up. Please add to it! 
 
Sorting 

●​ Formal definition of sorting 
●​ Stable vs unstable sorting 

○​ https://stackoverflow.com/a/1517824 Stable sorting is where elements that have 
the same value appear in their original order after sorting. Important if they point 
to different things. 

○​ Unstable sorting is where elements with the same value may appear in any order. 
 
Divide & Conquer 

●​ What defines a D&C algorithm? 
●​ Typical structure of a D&C algorithm 

○​ Divide - Split a problem into smaller, independant problems 
○​ Solve - Solve each sub-problem 
○​ Combine - Merge the sub-solutions together to form a solution for the initial 

problem 
●​ Requirements for a D&C proof 

○​ Direct Case - Assuming a condition A, prove that a statement R is held 
○​ Divide - Assuming A, prove that the subproblems share the same assumption for 

their given problem size. 
○​ Combine - Assuming A and Ri holds for each subproblem (1..i), show that 

combining the sub solutions maintains R 
●​ The meaning of each term in the master theorem: curly L, k, f(n) 

○​ l = number of recursive calls, sometimes shown as ‘a’ 
○​ k = size input is reduced by each recursive call, sometimes shown as ‘b’ 
○​ f(n) = cost of divide + combine 
○​ T(n)= lT(n/k) + f(n) // straight forward if you look at the master theorem 

Master Theorem (Simplified Version) 
Formula: T(n) = aT(n/b) + f(n) 
Steps to solve master theorem questions: 

1.​ Extract ‘a’, ‘b’, and f(n) from recurrence relation (see meaning of master theorem section 
for what the variables represent) 

2.​ Determine  𝑛𝑙𝑜𝑔𝑏(𝑎)

3.​ Compare f(n) with  asymptotically (is f(n) bigger, smaller, or equal to ) 𝑛𝑙𝑜𝑔𝑏(𝑎) 𝑛𝑙𝑜𝑔𝑏(𝑎)

4.​ Determine appropriate master theorem case and apply it 
 
Master Theorem Cases (Informal) 

1.​ If f(n) is smaller than and have to express order in terms of f(n),  𝑛𝑙𝑜𝑔𝑏(𝑎)

https://stackoverflow.com/a/1517824


 
 

T(n) ⋿  Θ( ) 𝑛𝑙𝑜𝑔𝑏(𝑎)

2.​ If f(n) is equal to , then T(n) ⋿ Θ(  log n) 𝑛𝑙𝑜𝑔𝑏(𝑎) 𝑛𝑙𝑜𝑔𝑏(𝑎)

3.​ If f(n) is greater than , then T(n)  ⋿ Θ(f(n)) 𝑛𝑙𝑜𝑔𝑏(𝑎)

 
See https://www.youtube.com/watch?v=6CX7s7JnXs0 
 
Greedy Algorithms 

●​ What defines a GA algorithm? 
●​ Conditions for a GA to be suitable 
●​ Requirements for a proof of GA correctness 

○​ Acceptable solution: capture what is a correct solution 
○​ Feasible partial solution: every feasible partial solution can be extended to an 

acceptable solution 
○​ Optimal substructure: (will need to be able to prove this) Every optimal solution is 

a composition of optimal partial solutions 
○​ Greedy choice: Every optimal partial solution may be extended by a greedy 

choice. Greedy choice being some simple next logical step. Eg. shortest 
available path. 

 
Dynamic Programming 

●​ What defines a DP algorithm? 
●​ Requirements for a proof of DP correctness 

​ ​ Just optimal substructure? 
●​ Memoization 

○​ Involves using previously calculated values from a table instead of re-calculating 
values. Known as caching 

 
Graphs 

●​ Requirements for a proof of GS correctness 
●​ Defn of connected, complete, euclidean graphs 
●​ Defn of cycle, hamiltonian cycle 

○​ Hamiltonian cycle is a cycle that starts and ends at the same vertex and passes 
through every other vertex exactly once. 

○​ A cycle is a path that goes along a graph, starting and ending at the same 
vertex/node 

●​ Pruning / Bounding? 
○​ Removing unnecessary paths in a graph. Ie like we enumerated the possibilities 

in the knapsack, instead of putting more objects, cut off the path when the weight 
is overflowing 

 
 
 

https://www.youtube.com/watch?v=6CX7s7JnXs0


 
 

Complexity 
●​ Definition of O, Θ, Ω 

○​ O Big Oh: Upper bound {f(n)|(∃d)(aa n)[0≤f(n)≤d.g(n)]} 
○​ Θ Big Theta: Exact bound {f(n)|(∃c>0,d)(aa n)[0≤c.g(n)≤f(n)≤d.g(n)]} 
○​ Ω Big omega: Lower bound {f(n)|(∃c>0)(aa n)[f(n)≥c.g(n)≥0]} 

●​ Definition of P, NP, NPC, NP-Hard 
○​ P: Polynomial time problems, able to be SOLVED by a deterministic turing 

machine in O(nk) time, for some k. Sometimes considered ‘easy’ problems. 
○​ NP: 

■​ CHECKABLE by a DTM in polynomial time 
■​ able to be solved by a nondeterministic turing machine in polynomial time 

(somewhat theoretical since NTMs don’t exist) 

○​ NPComplete: A ∈ NPC if A ∈ NP and for every B ∈ NP  𝐵≤𝑃𝐴

○​ NPHard: A ∈ NPH if every B ∈ NP,  𝐵≤𝑃𝐴

■​ (or, equivalently, that there exists C ∈ NPC, ) 𝐶 ≤𝑃𝐴
■​ “as hard as NPC, but not necessarily in NP” 

●​ What does mean? 𝐴≤𝑃𝐵
○​ A is polynomial-reducible to B. (A and B are problems) 
○​ that is: inputs of A can be converted to inputs of B in polynomial time; and results 

from B can be converted to results from A in poly. time 
●​ The venn diagram 

 
●​ Here’s some problem. What minimum complexity Ω does it have? 

○​ element selection 
○​ comparison-based sort 

●​ Prove that P!=NP (5 marks and a Nobel Prize in Computer Science). 
 
Linear Programming 

●​ What’s the main idea of LP? (i.e. how are problems represented?) 



 
 

●​ LP is basically getting a set of values and trying to maximise (or minimise) a certain 
output 

●​ How does the simplex algorithm work? 
●​ Draw a diagram 

 
Approximation & Probabilistic 

●​ What distinguishes traditional, approxim’n, and prob’stic algorithms from each other? 
●​ Def’n of Numerical, Las Vegas, Monte Carlo, and Sherwood 

○​ Las Vegas: Always gives a correct answer at some point in time. As the program 
runs the likelihood of it providing the answer increases. 

○​ Monte Carlo: always give an answer, but there is some probability of being 
completely wrong. The probability of an incorrect answer decreases over time. 

○​ Numerical: give an approximation to the correct answer. As the algorithm runs for 
longer the answer gets more accurate 

○​ Sherwood: Variant of the Las Vegas model which attempts to change aspects of 
the problem to minimise the impact of worst case scenarios. 

●​ Examples of Numerical, Las Vegas, Monte Carlo, and Sherwood 
Guest Lectures 

●​ John Lewis talked about a program that could generate any/every image (and therefore 
video) (there were no slides posted and I didn’t take notes) 

○​ “Describe the main idea of Kolmogorov Complexity” will be the most likely 
question 

●​ Yi Mei on deep learning 
○​ Deep Learning: Machine learning algorithms based on learning multiple levels of 

representation / abstraction. 
○​ Common tasks include; classification, regression, and clustering. 

●​ Mark Moir on blockchain 
○​ Agreement on updates to shared data 
○​ Tamper-proof, immutable record of agreed updates 
○​ Update governed by flexible, precise rules (smart contracts) 
○​ No trusted intermediary required 
○​ Bitcoin/Ethereum 

2014 Exam 
Questions ​ ​ ​ Marks 
1. Divide and Conquer ​ ​ [30]  
2. Greedy Algorithms ​​ ​ [35]  
3. Dynamic Programming ​ ​ [30]  
4. Approximation Algorithms ​​ [25] 
 



 
 

Question 1. Divide and Conquer 
 
(a) [4 marks] Use pseudocode to describe the basic structure of a typical divide-and-conquer 
algorithm. Explain the components of your algorithm. 
 

 
 
(b) [4 marks] State a requirement that an array is sorted which can be used to prove that a 
sorting algorithm is correct (similar to how we did it in the first few lectures).  
   
I don't think the answer below is what this question asks for. In the first few lectures we went 
through a technique for proving sorting algorithms are correct using loop invariants and ensuring 
the loop invariant satisfies at 1. Initialization, 2. Maintenance and 3. Termination of the loop.  
 
For all p and q such that p < q, in the sorted list S’ we have S’[p] <= S’[q] 
 

1.​ declare an invariant condition for each iteration j: 
a.​ elements before j are a permutation of original dataset 
b.​ elements before j in new set are ordered 
c.​ elements after j are unchanged from original 

2.​ Show that the loop invariant holds prior to the first iteration 
3.​ (Induction) Show that if the invariant holds at iteration j, it will hold at j+1 

 
 
How about this? 
Suppose the problem description P(n) is made up of an assumption A and a requirement R.  



 
 

 
The following conditions are sufficient to ensure divcon is correct:  
Direct 

-​ may assume A and n ≤ n0  
-​ must establish R  

Divide  
-​ may assume A and n > n0  
-​ must establish ni < n and Ai for each i ∈ 1..l  

Combine  
-​ may assume A and Ri for each i ∈ 1..l  
-​ must establish R. 

 
Consider the following algorithm that sorts the array A between indices i and j (initially set to the 
first and last element indices of the array A):  

 
 
 
 
 
 
 
 
 
 
 
(c) [7 marks] Give the 

general structure of the proof of correctness of a divide and conquer algorithm, and use it to 
show that the THIRDS-SORT algorithm above correctly sorts the input array. 
 
Let problem P = assumption A + requirement R + problem size N 
In this case: A = nothing, R = the list is sorted, n = j - i 
Steps of the process: 

   
 



 
 

Direct case 
if n = 0, the list is a singleton, so it’s already sorted: R satisfied 
If n = 1: 
​ If a[1] < a[2], already sorted 
​ otherwise, it will swap them, which will make them sorted 
 
Divide 
Assume: n >= 1 
Therefore: k >= (n + 1)/3, i.e. k >= 1 
 
So problem sizes will be either: 

●​ (j - k) - i < j - i 
●​ j - (i + k) < j - i 

Which makes them smaller, as required 
 
Combine 
If i...j-k is sorted 
And i+k...j is sorted 
Then clearly i...j is sorted 
 
 
 
(d) [7 marks] Give a recurrence relation for the worst-case running time of THIRDS-SORT and 
a tight asymptotic (Θ) bound on the worst-case running time.  
 

 
So here curly_l = 3, k = 1.5 → α = 2.7; divide and combine operations are both o(1) 
So by master method, it’s in θ(n^2.7) 
 
 
(e) Compare the worst-case running time of THIRDS-SORT with that of:  

(i) [2 marks] insertion sort 
n^2 
(ii) [2 marks] mergesort 
n log n 
(iii) [2 marks] heapsort 
n log n 



 
 

(iv) [2 marks] quicksort.  
n^2 
 
so it’s worse than all of them. 

 

Question 2. Greedy Algorithms 
Consider the problem of making change of n cents using the fewest number of coins. Assume 
that each coin’s value is an integer.  
 

(a) [10 marks] Describe a greedy algorithm to make change consisting of 25c, 10c, 5c, 
and 1c coins. Prove that your algorithm yields an optimal solution. Follow the lecture 
slides style of presenting and proving greedy algorithms.  
 
PTO for answers :) 
 
 
(b) [10 marks] Suppose that the available coins are the powers of c, i.e. values are c 0 , 
c 1 , . . . , c k for some integers c > 1 and k > 1. Show that the greedy algorithm always 
yields an optimal solution.  
 
 
 
(c) [5 marks] Give a set of coin values for which the greedy algorithm does not yield an 
optimal solution. Your set should include a 1c coin so that there is a solution for every 
value of n.  
(d) [10 marks] Give an O(nk)-time algorithm that makes change of n cents using coins 
from any given set of k different coin values, assuming that one of the coins is 1c. Show 
that the time your algorithm takes is as required.  
 



 
 

 
Then replace {oi, oj…ok} with gi and you get a better solution than O. 



 
 

 

Question 3. Dynamic Programming 
A certain string-processing language allows a programmer to break a string into two pieces. 
Because this operation copies the string, it costs n time units to break a string of n characters 
into two pieces. Suppose a programmer wants to break a string into many pieces. The order in 
which the breaks occur can affect the total amount of time used. For example, suppose that the 
programmer wants to break a 20-character string after characters 2, 8, and 10 (numbering the 
characters in ascending order from the left-hand end, starting from 1). If she programs the 
breaks to occur in left-to-right order, then the first break costs 20 time units, the second break 
costs 18 time units (breaking the string from characters 3 to 20 at character 8), and the third 
break costs 12 time units, totalling 50 time units. If she programs the breaks to occur in 
right-to-left order, however, then the first break costs 20 time units, the second break costs 10 
time units, and the third break costs 8 time units, totalling 38 time units. In yet another order, she 
could break first at 8 (costing 20), then break the left piece at 2 (costing 8), and finally the right 
piece at 10 (costing 12), for a total cost of 40.  
 

(a) [10 marks] Design an algorithm that, given the numbers of characters after which to 
break, determines a least-cost way to sequence those breaks. More formally, given a 
string S with n characters and an array L[1 . . . m] containing the breakpoints, compute 
the lowest cost for a sequence of breaks, along with a sequence of breaks that achieves 
this cost.  
 
Initialise array Cost[N x N] 
  
function Fkghl(S, L, i=0, j=N): 
if j – i = 0 return 0 
  
if Cost[i, j] is null: 

Cost[i, j] = min([ 
(j – i) + Fkghl(S, L, i, k-1) + Fkghl(S, L, k+1, 

j) 
for k in L if i < k < j  

]) 
//memoised D&C: write values to Cost array as we go 

    ​  
    ​ return Cost[i, j] 
 
 
(b) [10 marks] Prove that this problem has an optimal substructure property.  
 



 
 

 
 
(c) [10 marks] Prove that your algorithm is correct. 
 

a)      The algorithm terminates, since all loops are finite 
b)      The problem has optimal substructure (see above) 
c)       The algorithm respects this optimal substructure by returning 0 if i = j, and 

returning the cost of the string’s length, plus the minimum (wrt potential split 
points) of the costs of splitting each substring given each potential split point 

 
 
 
 
 

 

Question 4. Approximation Algorithms 
Suppose you are given a set of positive integers A = a1, a2, . . . , an and a positive integer B. A 
subset S ⊆ A is called feasible if the sum of the numbers in S does not exceed B:  
 

∑ ai∈S ai ≤ B  
 

The sum of the numbers in S will be called the total sum of S.  
You would like to select a feasible subset S of A whose total sum is as large as possible. 
Example. If A = 8, 2, 4 and B = 11, then the optimal solution is the subset S = 8, 2. 
 
(a) [10 marks] Here is an algorithm for this problem.  

 

Initially S = ∅  
Define T = 0  



 
 

For i = 1, 2, . . . , n  
If T + ai ≤ B then  

     ​​ S ← S ∪ ai  
        ​ T ← T + ai  
    ​ Endif  
Endfor  

 
 

Give an instance in which the total sum of the set S returned by this algorithm is less than half 
the total sum of some other feasible subset of A.  

 
 
elements: {1, 10}​
B limit: 10 
 
it will pick 1, reject 10, and get a result 10% of the best feasible subset (i.e. {10}) 
 
 
 

(b) [15 marks] Give a polynomial-time approximation algorithm for this problem with the 
following guarantee:  
 

• It returns a feasible set S ⊆ A whose total sum is at least half as large as the maximum 
total sum of any feasible set S 0 ⊆ A.  
 
throw away any elements larger than B (obvsly they can’t be part of the solution) 
start adding elements a1, a2, … a[i] as before 
When you get to the element a[i+1] that would tip us over the limit, then either a[1...i] or 
a[i+1] is more than half of B. So pick whichever’s larger. hooray 
 

Your algorithm should have a running time of at most O(n logn) (note that at most means that a 
running time of Θ(n) is acceptable). 
 
 
 

 

 



 
 

2015 Exam 
Questions ​ ​ ​ Marks 
1. Divide and Conquer ​ ​ [30]  
2. Various Algorithms ​​ ​ [35]  
3. Dynamic Programming ​ ​ [30]  
4. Approximation Algorithms ​​ [25] 
5. Chips But No Fish​ ​ ​ [25] 
 

Question 1. Divide and Conquer 
(a) [10 marks] Use the master method to give tight asymptotic bounds for the following 
recurrences:  
 
1. T(n) = 2T(n/4) + 1 Case 1: alpha is 0.5 so O(sqrt n)  
2. T(n) = 2T(n/4) + √ n Case 2: same alpha so O(sqrt n log n)  
I agree but don’t you mean Θ (theta) instead of O? Surely you’d lose a few marks for this, 
important. And I would write T(n) ∈ blah blah to prefix it....  
 
Answer:T(n) ∈ Θ(sqrt n) ; 2. T(n) ∈ Θ (sqrt n n log n) 
 
(b) [10 marks] Describe a typical structure of a Divide and Conquer algorithm and outline a 
typical approach to proving it correct as was described in the lectures and was used to prove 
the correctness of merge sort etc. 

 



 
 

 

Question 2. Various Algorithms 
(a) [10 marks] Pick your favourite lock-free data structure and describe how it works despite the 
lack of locks etc. Use diagrams as appropriate. See description in CACM article and make sure 
to include CAS operation and what it does.  
 

not covered 
 
 
(b) [5 marks] Draw two Venn Diagrams (showing how sets overlap or intersect) representing 
the sets of P, NP, NP-Hard, and NPC problems. One diagram should assume P = NP and the 
other diagram should assume P 6= NP. https://en.wikipedia.org/wiki/NP-hardness 
 

https://en.wikipedia.org/wiki/NP-hardness


 
 

 
 
 
(c) [5 marks] What is the difference between Monte Carlo and Las Vegas probabilistic 
algorithms? See relevant lecture sl 
Monte Carlo - Probably Correct 
Las Vegas - Probably Fast 
 
Monte Carlo - May not be correct, always gives an answer (MC - Maybe Not Correct) 
Las Vegas - Always correct, may not give an answer 



 
 

Question 3. Dynamic Programming 

 
 
 
 
 
 
 
 
 
 
 



 
 

(a) [5 marks] Show that the following algorithm does not correctly solve this problem, by giving 
an instance on which it does not return the correct answer. Assume that n = 4 and M = 10 as it 
was in the example above.  
 
Give the optimal solution and its cost, as well as what the algorithm finds.  
 

for i = 1 to n  
if Hi < Ni  

then output " HB in Month i "  
else  

output " NP in Month i "  
end  

 
Check to see if I’ve correctly interpreted: 
Instance (I’ve created this): 
Month​ ​ 1​ 2​ 3​ 4 
Hi​ ​ 25​ 25​ 30​ 25 
Ni​ ​ 30​ 30​ 25​ 30 
Algorithm output: 
Hb month 1, hb month 2, np month 3, hb month 4 
( total cost = 25 + 25 + 25 + 25 + (2*10) = 120) 
Correct solution: 
Hb month 1, hb month 2, hb month 3, hb month 4 
( total cost = 25 + 25 + 25 + 30 +(0*10) = 105) 
 
The provided algorithm is incorrect in this instance as it factors in only savings in month 3, but 
not the additional location change cost 
 
(b) [5 marks] Give an example of an instance (again with n = 4 and M = 10) in which the 
optimal plan must move (i.e., change locations) at least three times. Provide a brief explanation, 
saying why your example has this property.  
Check to see if I’ve correctly interpreted: 
-Instance (I’ve created this): 
Month​ ​ 1​ 2​ 3​ 4 
Hi​ ​ 20​ 25​ 5​ 25 (total staying for 4 months straight is 75) 
Ni​ ​ 35​ 5​ 25​ 5 (as above, total = 70) 
Optimal Output: hb month 1 np month 2 hb month 3 np month 4 
Cost = 20+5+5+5 + (3*10) = 65 
 
It works because moving from city 1 to city 2 suggests that city 2 is at least cost 10 cheaper than 
city 1. This is the only reason why a move would be justifiable -- if city 2 is 5 cheaper than city 1 
we would no move as we still incur cost 10 to move. 



 
 

In my example this occurs 3 times and we have also considered the cost of staying in a city for 
4 months straight, and it holds that moving 3 times is the cheapest option. 
 
 
 
 
(c) [20 marks] Give a pseudocode for an efficient algorithm that takes values for n, M, and 
sequences of operating costs H1, . . . , Hn and N1, .  . . , Nn, and returns the cost of an optimal 
plan.  
 
Hint: What is the table of intermediate results with optimal substructure property?  
 
Obvious if you just think about it algorithm 
 

 
 
 
 
 
 
 
 

Question 4. Approximation Algorithms  
Suppose you are acting as a consultant for the Port Authority of a small Pacific Rim nation. 
Their revenue is constrained almost entirely by the rate at which they can unload ships that 
arrive in the port.  
 
Here is a basic sort of problem they face. A ship arrives, with n containers of weight w1, . . . , 
wn. Standing on the dock is a set of trucks, each of which can hold K units of weight. (You can 
assume that K and each wi is an integer.) You can stack multiple containers in each truck, 
subject to the weight restriction of K; the goal is to minimise the number of trucks that are 
needed in order to carry all the containers. This problem is NP-complete (you don’t have to 
prove this).  



 
 

A greedy algorithm you might use for this is the following. Start with an empty truck, and begin 
piling containers 1, 2, 3, . . . into it until you get to a container that would overflow the weight 
limit. Now declare this truck “loaded” and send it off; then continue the process with a fresh 
truck. This algorithm, by considering trucks one at a time, may not achieve the most efficient 
way to pack the full set of containers into an available collection of trucks. (a) [5 marks] Give an 
example of a set of weights, and a value of K, where this algorithm does not use the minimum 
possible number of trucks.  
 
(a) [5 marks] Give an example of a set of weights, and a value of K, where this algorithm does 
not use the minimum possible number of trucks.  
 
weights: 1, 2, 1 
K = 2 
 
THese will fit into two trucks, but the algorithm will use 3 
 
 
 
(b) [15 marks] Shown that the number of trucks used by this algorithm is within a factor of 2 of 
the minimum possible number, for any set of weights and any value of K. 
 
Suppose the number of trucks used by our greedy algorithm = m. 
Divide the trucks used into consecutive groups of two, for a total of m/2 groups. In each group 
but the last, the total weight of containers must be strictly greater than K (else, the second truck 
in the group would not have been started). ​  
 
So if the optimal solution uses O = totalweight/K trucks 
then m <= 2*totalweight/K 
 
******** different explanation by someone else below******* 
 
Optimal solution will have: 
O, number of optimal trucks = total weight / K  
in a worst case scenario (non optimal) we can have up to 2*O trucks 
want to prove it is bounded by 2*O using the algorithm 
 
each truck, on average will be at least half full using the algorithm 
take a sequence a,b,c,d,e,f,g 
 
if any two consecutive containers, ie a and b, have the property a+b > k 
then storing a and b will require at least two trucks, however 
as a+b > K then the two trucks will, on average, have greater than 0.5k weight 
this holds for any pair of consecutive containers 



 
 

 
if a+b <= k then they can fit in one truck and we move on with the algorithm, now 
considering the pair (a,b) as ONLY ONE container, a*, and the next container in the sequence ie 
c, as the SECOND container, b*. We will eventually reach a point where a*+b*> K 
 
thus we have T, number of trucks using algorithm, <= totalweight/0.5k 
which is certainly not more than double that of totalweight/k 
 
thus the number of trucks used by the algorithm is within a factor of 2. 
 
 
 
 
 
 

Question 5. Chips but No Fish 
(a) Professor Dale has n supposedly identical integrated-circuit chips that in principle are 
capable of testing each other. The professor’s test jig accommodates two chips at a time. When 
the jig is loaded, each chip tests the other and reports whether it is good or bad. A good chip 
always reports accurately whether the other chip is good or bad, but the professor cannot trust 
the answer of a bad chip. Thus, the four possible outcomes of a test are as follows: 

 
 
 
 
 
 

 
(i) [10 marks] Show that if you know that all the chips potentially can be bad (but you do not 
know how many are good or bad), no matter what algorithm the professor will come up with that 
claims to correctly identify the good chips, there is going to be a way to get the bad chips to 
conspire to behave in such a way that the algorithm would not work (i.e. not be able to correctly 
identify the good chips). Explain clearly how you can make the chips behave to defeat any such 
algorithm. 
 
The strategy for the bad chips is to always say that other bad chips are good and other good 
chips are bad. This mirrors the strategy used by the good chips, and so, it would be impossible 
to distinguish  
 
 



 
 

(ii) [10 marks] Consider the problem of finding a single good chip from among n chips, 
assuming that more than n/2 of the chips are good (or in other words definitely less than half of 
the chips are bad in any given input). Show that bn/2c pairwise tests are sufficient to reduce the 
problem to one of less than half the size.  
 
Hint 1: If you put two chips on the jig and the result says that one of them is bad, what would 
happen if you throw both of the chips away?  
 
Hint 2: If you have a set of pairs of chips each of which is either both good or both bad (you 
don’t necessarily know which though), and you know that the majority of such pairs are both 
good, then how can you come up with a smaller set of chips with the same property of having 
majority being good?  
 
You should be able to use the two hints above to come up with an algorithm. 
 
Arbitrarily pair up the chips. Look only at the pairs for which both chips said the other was good. 
Since we have at least half of the chips being good, we know that there will be at least one such 
pair which claims the other is good. We also know that at least half of the pairs which claim both 
are good are actually good. Then, just arbitrarily pick a chip from each pair and let these be the 
chips that make up the sub-instance of the problem 
 
 
 
(iii) [10 marks] Show that the good chips can be identified with Θ(n) pairwise tests, assuming 
that more than n/2 of the chips are good. Give and solve the recurrence that describes the 
number of tests. 
 
Once we have identified a single good chip, we can just use it to query every other chip. 
Recurrence: T(n) <= T(n/2) + n/2 
So T(n) ε θ(n) 
 
 
 
 
 

 

 



 
 

2016 Exam 
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Questions ​ ​ ​ Marks 
1. Divide and Conquer ​ ​ [30]  
2. Greedy Algorithms ​​ ​ [30]  
3. Dynamic Programming ​ ​ [30]  
4. Guest Lectures​ ​ ​ [10] 
5. Approximation Algorithms (hard)​ [20] 
 

  Question 1. Divide and Conquer 
(a) (10 marks) How many lines, as a function of n (in Θ() form), does the following program 
print? You may assume n is a power of 2.  
 
Hint: Write a recurrence that represents the number of lines printed and solve it. 
 

function f ( n )  
if n > 1:  

print_line ( ‘ ‘ still going ’ ’)  
f ( n /2)  
f ( n /2)  

 
 
T(n) =  
1  | if n <= 1 
2T(n/2) + 1 | if n > 1 
 
Trivial application of master theorem, (or just intuition) gives theta n. 
 
 
 
(b) (10 marks) You are given an array of n elements, and you notice that some of the elements 
are duplicates; that is, they appear more than once in the array. Show how to remove all 
duplicates from the array in time O(n logn).  
 
Most simple method, just sort (O(n logn)) and remove duplicates (O(n) or O(1) if you get fancy 
by doing it while sorting).  

http://ecs.victoria.ac.nz/foswiki/pub/Main/ExamArchiveCOMP361/exam2016-partial-solution.pdf


 
 

Overall the combination of the sorting and reduction equates to O(nlogn) + O(n). Lower order 
terms are dropped as we consider the asymptotic bounds. Therefore the proposed solution is 
O(n logn) 
 
(c) (10 marks) (Hard) Suppose you are given matrices A, B, C which are each n by n and you 
wish to check whether AB = C. You can do this in O(n log

2
7 ) steps using Strassen’s algorithm. In 

this subquestion we will explore a much faster, O(n 2 ) randomised test. 
 

(i) Let en to be 0 or 1 (each with probability 1/2). Prove that if M is a non-zero n by n 
matrix (i.ev be an n-dimensional vector whose entries are randomly and independently 
chosen. at least one element is not a zero), then Pr[Mv = 0] ≤ 1/2.  

 
Prove by counting argument, show 1-1 correspondence between v’s that produce Mv = 0 and 
Mv /= 0 by transforming between such v’s. 
 

 
 



 
 

(ii) Show that Pr[ABv = Cv] ≤ 1/2 if AB /= C. Why does this give an O(n 2 ) randomised 
test for checking whether AB = C? 

 
ABv = Cv => ABv - Cv = 0, let M = AB - C => Mv = 0, from above Pr[Mv = 0] ≤ ½. 

 
 
Computations required: M = AB - C (O(n^2)), Mv = 0 (O(n^2)). You can probably skip the M = 
AB - C calculation and just apply it to ABv = Cv, since the reverse of the above holds too? 
Haven’t thought about it. 
 
https://www.coursehero.com/file/p1r1sg/d-We-can-save-some-time-by-sorting-the-points-by-y-co
ordinate-only-once-and/ 

Question 2. Greedy Algorithms 
Here’s a problem that occurs in automatic program analysis. For a set of variables x1, . . . , xn, 
you are given some equality constraints, of the form “xi = xj” and some disequality constraints, 
of the form “xi 6= xj .” Is it possible to satisfy all of them?  
 
For instance, the constraints  

 
x1 = x2, x2 = x3, x3 = x4, x1 6= x4 

 
cannot be satisfied. 
 
(a) (15 marks) Give an efficient algorithm that takes as input m constraints over n variables and 
decides whether the constraints can be satisfied.  
 



 
 

Hint: One possible option is to consider a graph representation of this problem where each 
node is a variable (e.g. xi ) and an edge represents an “equality constraint”. ​
 
WTF 
Each variable is a node, edges are equality. 
Iterate over all disequalities, from LHS traverse graph, if reach RHS then contradiction. 
 
Just use a modified version of kruskal's algorithm  
 
 
create graph representation with nodes being 
variables and edges being equality constraints between them. 
 
Do breadth (or depth) first search starting from node representing LHS  
variable of disequality (note: check that both nodes are in the graph first!). If we see RHS 
variable it is not satisfied  
otherwise it is satisfied. 
 
 
 
(b) (10 marks) Argue (or do a proof sketch) that your algorithm is correct.  
 
If there is an equality between any two nodes x_a and x_z, either directly or via x_b, x_c, x_d 
etc, then there will be an edge between them. So x_a and x_z will be connected, and the BFS 
will find one from the other, indicating that the inequality cannot hold. 
 
 
(c) (5 marks) State the asymptotic cost of your algorithm and justify why it’s correct.  
 
O(n), i’ll do it in the morning (or some other time). 
 
Add vertices (variables): O(n) 
Add edges (equalities): O(m) 
DFS from each vertex: O(n + m) 
Total number of DFS’s: m 
 
So: O(mn +m2) 

Question 3. Dynamic Programming 
You are given a string of n characters: s[1 . . . n], which you believe to be a corrupted text 
document in which all punctuation has vanished (so that it looks something like 



 
 

“itwasthebestoftimes...”). You wish to reconstruct the original document using a dictionary, which 
is available in the form of a Boolean function dict(). For any string w, 
 
 
 
 
 
(a) (20 marks) Give a dynamic programming algorithm that determines whether the string s[] 
can be reconstituted as a sequence of valid words. The running time should be at most O(n 2 ), 
assuming calls to dict take unit time. 
 
 
 
 
 
 
int[] dp = new int[s.len]; 
dp.fill(-1) 
dp[0] = 0; 
String res; 
 
for(int i = 0; i < s.len; ++i) { 
    if(dp[i] != -1) { 
        for(int j = i+1; j <= s.len; ++j) { 
            int len = j-i; 
            string substr = str.substr(i, len); 
            if(dict.has(substr)) { 
                res += (i ? " " : "") + substr; 
                dp[j] = dp[i]+1; 
            } 
        } 
    } 
} 
hasSolution = dp[dp.len-1] >= 0; 
return res; 
 
 
 
(b) (10 marks) In the event that the string is valid, modify your algorithm to output the 
corresponding sequence of words.  
 
 
 



 
 

Question 4. Guest Lectures 
(a) (5 marks) State what the Tutte Polynomials are used for as presented in David’s guest 
lecture.  
 
 
 
 
(b) (5 marks) Outline the main steps of the JPEG Encoding Algorithm as discussed in Neil’s 
guest lecture.  
 

Question 5. Approximation Algorithms (Hard) 
Recall the knapsack problem from the lectures and assignment 3. There are n items, where the 
ith item is worth vi dollars and weighs wi grams. We are also given a knapsack that can hold at 
most W grams. Here, we add the further assumptions that each weight wi is at most W and that 
the items are indexed in monotonically decreasing order of their values: v1 ≥ v2 ≥ . . . ≥ vn.  
 
In the 0-1 knapsack problem, we wish to find a subset of the items whose total weight is at most 
W and whose total value is maximum. The fractional knapsack problem is like the 0-1 knapsack 
problem, except that we are allowed to take a fraction of each item, rather than being restricted 
to taking either all or none of each item. If we take a fraction xi of item i, where 0 ≤ xi ≤ 1, we 
contribute xiwi to the weight of the knapsack and receive value xivi . Our goal is to develop a 
polynomial-time approximation algorithm for the 0-1 knapsack problem. 
 
In order to design a polynomial-time algorithm, we consider restricted instances of the 0-1 
knapsack problem. Given an instance I of the knapsack problem, we form restricted instances Ij 
, for j = 1, 2, . . . , n, by removing items 1, 2, . . . , j − 1 and requiring the solution to include item j 
(all of item j in both the fractional and 0-1 knapsack problems). No items are removed in 
instance I1. For instance Ij , let Pj denote an optimal solution to the 0-1 problem and Qj denote 
an optimal solution to the fractional problem.  
 
(a) (4 marks) Argue that an optimal solution to instance I of the 0-1 knapsack problem is one of 
{P1, P2, . . . , Pn}.  
 
 
 
 
(b) (4 marks) Prove that we can find an optimal solution Qj to the fractional problem for instance 
Ij by including item j and then using the greedy algorithm in which at each step, we take as 



 
 

much as possible of the unchosen item in the set {j + 1, j + 2, . . . , n} with maximum value per 
gram vi/wi .  
 
 
 
(c) (4 marks) Prove that we can always construct an optimal solution Qk to the fractional 
problem for instance Ij that includes at most one item fractionally. That is, for all items except 
possibly one, we either include all of the item or none of the item in the knapsack.  
 
 
 
 
(d) (4 marks) Given an optimal solution Qj to the fractional problem for instance Ij , form solution 
Rj from Qj by deleting any fractional items from Qj . Let v(S) denote the total value of items 
taken in a solution S. Prove that v(Rj) ≥ v(Qj)/2 ≥ v(Pj)/2.  
 
 
 
(e) (4 marks) Give a polynomial-time algorithm that returns a maximum-value solution from the 
set {R1, R2, . . . , Rn} , and prove that your algorithm is a polynomial-time approximation 
algorithm for the 0-1 knapsack problem.  
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