
Claude Initial Version (using 3.7) 

SF Street Cleaning Parking Assistant: App 
Development Plan 
I'll create a comprehensive plan for your parking ticket avoidance app. This is an excellent idea 
that solves a real problem many San Francisco residents face! 

App Design & Features 

Core Functionality 

●​ Map-based interface showing car location(s) and street cleaning zones 
●​ Countdown timers for upcoming street cleaning events 
●​ Multi-user alerts and notifications 
●​ AirTag integration for real-time car location tracking 
●​ Street cleaning schedule data integration 

User Interface Design 

1.​ Home Screen: Map view showing: 
○​ Car location(s) with pins 
○​ Color-coded streets showing cleaning schedules 
○​ Countdown to next cleaning event 

2.​ Car Management Screen: 
○​ Add/remove cars 
○​ Link AirTags to specific vehicles 
○​ Set manual locations (backup for AirTag) 

3.​ Alert Settings: 
○​ Configure notification timing (1hr before, night before) 
○​ Set notification methods (push, SMS) 
○​ Family member sharing management 

Technical Architecture 

Frontend (iOS App) 



●​ Language/Framework: Swift with SwiftUI for modern UI components 
●​ Key Libraries: 

○​ MapKit for mapping functionality 
○​ CoreLocation for device positioning 
○​ UserNotifications for push notifications 
○​ FindMy framework for AirTag integration 

Backend Services 

●​ Server: Node.js or Python-based service 
●​ Database: MongoDB for flexibility with location data 
●​ API Layer: RESTful API for client-server communication 
●​ Cloud Provider: AWS or Firebase (easier for beginners) 

Data Sources & Integration 

1.​ SF Street Cleaning Data: 
○​ SF Open Data Portal: 

https://data.sfgov.org/City-Infrastructure/Street-Sweeping-Schedule/yhqp-riqs 
○​ Will need regular syncing to keep schedules updated 

2.​ AirTag Integration: 
○​ Use Apple's FindMy framework (requires Apple Developer account) 
○​ Fallback: Manual location setting if AirTag data unavailable 

3.​ Notification System: 
○​ Apple Push Notification Service (APNS) 
○​ Twilio for SMS capabilities 

Development Roadmap 

Phase 1: Setup & Core Infrastructure 

1.​ Create iOS project structure 
2.​ Set up backend server and database 
3.​ Implement authentication system 
4.​ Create data models for vehicles, users, locations 

Phase 2: Map & Location Features 

1.​ Implement MapKit integration 
2.​ Build street cleaning data parser 
3.​ Create location tracking system 
4.​ Implement geofencing for location alerts 

https://data.sfgov.org/City-Infrastructure/Street-Sweeping-Schedule/yhqp-riqs
https://data.sfgov.org/City-Infrastructure/Street-Sweeping-Schedule/yhqp-riqs


Phase 3: Notification & Sharing Systems 

1.​ Build notification scheduling system 
2.​ Implement multi-user sharing 
3.​ Connect AirTag integration 
4.​ Create alert rules engine 

Phase 4: Testing & Refinement 

1.​ User testing with SF residents 
2.​ Performance optimization 
3.​ Edge case handling (data gaps, connection issues) 
4.​ Battery usage optimization 

Code Structure & Implementation 

iOS App (Swift) 
// Example structure for main view controller 
import UIKit 
import MapKit 
import CoreLocation 
 
class MainViewController: UIViewController, 
CLLocationManagerDelegate, MKMapViewDelegate { 
     
    @IBOutlet weak var mapView: MKMapView! 
    private let locationManager = CLLocationManager() 
     
    override func viewDidLoad() { 
        super.viewDidLoad() 
        setupLocationManager() 
        setupMapView() 
        loadVehicleLocations() 
        checkUpcomingStreetCleaning() 
    } 
     
    // Location manager setup 
    private func setupLocationManager() { 
        locationManager.delegate = self 
        locationManager.desiredAccuracy = 
kCLLocationAccuracyBest 
        locationManager.requestWhenInUseAuthorization() 
        locationManager.startUpdatingLocation() 



    } 
     
    // Map configuration 
    private func setupMapView() { 
        mapView.delegate = self 
        mapView.showsUserLocation = true 
        // Additional map configuration 
    } 
     
    // Load vehicle data from backend 
    private func loadVehicleLocations() { 
        // API call to get stored vehicle locations 
    } 
     
    // Check for upcoming street cleaning events 
    private func checkUpcomingStreetCleaning() { 
        // Query for nearby street cleaning schedules 
        // Schedule notifications if needed 
    } 
} 

Backend API (Node.js) 
// Example Express route for checking street cleaning 
const express = require('express'); 
const router = express.Router(); 
const StreetCleaningService = 
require('../services/streetCleaningService'); 
 
router.post('/check-street-cleaning', async (req, res) => { 
  try { 
    const { latitude, longitude } = req.body; 
    const service = new StreetCleaningService(); 
     
    // Find upcoming street cleaning events near location 
    const events = await service.findNearbyEvents(latitude, 
longitude); 
     
    // Return events to client 
    res.json({ success: true, events }); 
  } catch (error) { 
    console.error(error); 
    res.status(500).json({ success: false, message: 'Server 
error' }); 
  } 



}); 
 
module.exports = router; 

Data Storage Strategy 

User & Vehicle Data 

●​ MongoDB collections for: 
○​ Users (account info, preferences) 
○​ Vehicles (make, model, AirTag ID) 
○​ Locations (historical parking spots) 
○​ Alerts (notification history) 

Street Cleaning Data 

●​ Initially load from SF Open Data API 
●​ Store processed data in MongoDB 
●​ Update weekly with scheduled job 
●​ Create spatial indices for fast location-based queries 

Launch Strategy 
1.​ Development Environment: 

○​ Xcode for iOS development 
○​ GitHub for version control 
○​ TestFlight for beta testing 

2.​ Testing Phases: 
○​ Alpha: Internal testing with simulated data 
○​ Beta: Limited user group in SF with real data 
○​ Public launch: App Store release 

3.​ App Store Preparation: 
○​ Create compelling screenshots and App Store description 
○​ Prepare privacy policy (important for location data) 
○​ Set up App Store Connect account 

Potential Challenges & Solutions 
1.​ AirTag Integration Limitations: 

○​ Challenge: Apple's FindMy API has restrictions 
○​ Solution: Implement manual location fallback 

2.​ Battery Usage: 



○​ Challenge: Location tracking can drain battery 
○​ Solution: Smart polling based on proximity to cleaning time 

3.​ Data Accuracy: 
○​ Challenge: SF street cleaning data may have gaps 
○​ Solution: Allow user corrections and community reporting 

4.​ Privacy Concerns: 
○​ Challenge: Managing location data securely 
○​ Solution: Implement proper encryption and data retention policies 

Would you like me to elaborate on any specific part of this plan? Or should we discuss the next 
steps to begin implementation? 

 


	Claude Initial Version (using 3.7) 
	SF Street Cleaning Parking Assistant: App Development Plan 
	App Design & Features 
	Core Functionality 
	User Interface Design 

	Technical Architecture 
	Frontend (iOS App) 
	Backend Services 
	Data Sources & Integration 

	Development Roadmap 
	Phase 1: Setup & Core Infrastructure 
	Phase 2: Map & Location Features 
	Phase 3: Notification & Sharing Systems 
	Phase 4: Testing & Refinement 

	Code Structure & Implementation 
	iOS App (Swift) 
	Backend API (Node.js) 

	Data Storage Strategy 
	User & Vehicle Data 
	Street Cleaning Data 

	Launch Strategy 
	Potential Challenges & Solutions 


