
Claude Initial Version (using 3.7) 

SF Street Cleaning Parking Assistant: App 
Development Plan 
I'll create a comprehensive plan for your parking ticket avoidance app. This is an excellent idea 
that solves a real problem many San Francisco residents face! 

App Design & Features 

Core Functionality 

●​ Map-based interface showing car location(s) and street cleaning zones 
●​ Countdown timers for upcoming street cleaning events 
●​ Multi-user alerts and notifications 
●​ AirTag integration for real-time car location tracking 
●​ Street cleaning schedule data integration 

User Interface Design 

1.​ Home Screen: Map view showing: 
○​ Car location(s) with pins 
○​ Color-coded streets showing cleaning schedules 
○​ Countdown to next cleaning event 

2.​ Car Management Screen: 
○​ Add/remove cars 
○​ Link AirTags to specific vehicles 
○​ Set manual locations (backup for AirTag) 

3.​ Alert Settings: 
○​ Configure notification timing (1hr before, night before) 
○​ Set notification methods (push, SMS) 
○​ Family member sharing management 

Technical Architecture 

Frontend (iOS App) 



●​ Language/Framework: Swift with SwiftUI for modern UI components 
●​ Key Libraries: 

○​ MapKit for mapping functionality 
○​ CoreLocation for device positioning 
○​ UserNotifications for push notifications 
○​ FindMy framework for AirTag integration 

Backend Services 

●​ Server: Node.js or Python-based service 
●​ Database: MongoDB for flexibility with location data 
●​ API Layer: RESTful API for client-server communication 
●​ Cloud Provider: AWS or Firebase (easier for beginners) 

Data Sources & Integration 

1.​ SF Street Cleaning Data: 
○​ SF Open Data Portal: 

https://data.sfgov.org/City-Infrastructure/Street-Sweeping-Schedule/yhqp-riqs 
○​ Will need regular syncing to keep schedules updated 

2.​ AirTag Integration: 
○​ Use Apple's FindMy framework (requires Apple Developer account) 
○​ Fallback: Manual location setting if AirTag data unavailable 

3.​ Notification System: 
○​ Apple Push Notification Service (APNS) 
○​ Twilio for SMS capabilities 

Development Roadmap 

Phase 1: Setup & Core Infrastructure 

1.​ Create iOS project structure 
2.​ Set up backend server and database 
3.​ Implement authentication system 
4.​ Create data models for vehicles, users, locations 

Phase 2: Map & Location Features 

1.​ Implement MapKit integration 
2.​ Build street cleaning data parser 
3.​ Create location tracking system 
4.​ Implement geofencing for location alerts 

https://data.sfgov.org/City-Infrastructure/Street-Sweeping-Schedule/yhqp-riqs
https://data.sfgov.org/City-Infrastructure/Street-Sweeping-Schedule/yhqp-riqs


Phase 3: Notification & Sharing Systems 

1.​ Build notification scheduling system 
2.​ Implement multi-user sharing 
3.​ Connect AirTag integration 
4.​ Create alert rules engine 

Phase 4: Testing & Refinement 

1.​ User testing with SF residents 
2.​ Performance optimization 
3.​ Edge case handling (data gaps, connection issues) 
4.​ Battery usage optimization 

Code Structure & Implementation 

iOS App (Swift) 
// Example structure for main view controller 
import UIKit 
import MapKit 
import CoreLocation 
 
class MainViewController: UIViewController, 
CLLocationManagerDelegate, MKMapViewDelegate { 
     
    @IBOutlet weak var mapView: MKMapView! 
    private let locationManager = CLLocationManager() 
     
    override func viewDidLoad() { 
        super.viewDidLoad() 
        setupLocationManager() 
        setupMapView() 
        loadVehicleLocations() 
        checkUpcomingStreetCleaning() 
    } 
     
    // Location manager setup 
    private func setupLocationManager() { 
        locationManager.delegate = self 
        locationManager.desiredAccuracy = 
kCLLocationAccuracyBest 
        locationManager.requestWhenInUseAuthorization() 
        locationManager.startUpdatingLocation() 



    } 
     
    // Map configuration 
    private func setupMapView() { 
        mapView.delegate = self 
        mapView.showsUserLocation = true 
        // Additional map configuration 
    } 
     
    // Load vehicle data from backend 
    private func loadVehicleLocations() { 
        // API call to get stored vehicle locations 
    } 
     
    // Check for upcoming street cleaning events 
    private func checkUpcomingStreetCleaning() { 
        // Query for nearby street cleaning schedules 
        // Schedule notifications if needed 
    } 
} 

Backend API (Node.js) 
// Example Express route for checking street cleaning 
const express = require('express'); 
const router = express.Router(); 
const StreetCleaningService = 
require('../services/streetCleaningService'); 
 
router.post('/check-street-cleaning', async (req, res) => { 
  try { 
    const { latitude, longitude } = req.body; 
    const service = new StreetCleaningService(); 
     
    // Find upcoming street cleaning events near location 
    const events = await service.findNearbyEvents(latitude, 
longitude); 
     
    // Return events to client 
    res.json({ success: true, events }); 
  } catch (error) { 
    console.error(error); 
    res.status(500).json({ success: false, message: 'Server 
error' }); 
  } 



}); 
 
module.exports = router; 

Data Storage Strategy 

User & Vehicle Data 

●​ MongoDB collections for: 
○​ Users (account info, preferences) 
○​ Vehicles (make, model, AirTag ID) 
○​ Locations (historical parking spots) 
○​ Alerts (notification history) 

Street Cleaning Data 

●​ Initially load from SF Open Data API 
●​ Store processed data in MongoDB 
●​ Update weekly with scheduled job 
●​ Create spatial indices for fast location-based queries 

Launch Strategy 
1.​ Development Environment: 

○​ Xcode for iOS development 
○​ GitHub for version control 
○​ TestFlight for beta testing 

2.​ Testing Phases: 
○​ Alpha: Internal testing with simulated data 
○​ Beta: Limited user group in SF with real data 
○​ Public launch: App Store release 

3.​ App Store Preparation: 
○​ Create compelling screenshots and App Store description 
○​ Prepare privacy policy (important for location data) 
○​ Set up App Store Connect account 

Potential Challenges & Solutions 
1.​ AirTag Integration Limitations: 

○​ Challenge: Apple's FindMy API has restrictions 
○​ Solution: Implement manual location fallback 

2.​ Battery Usage: 



○​ Challenge: Location tracking can drain battery 
○​ Solution: Smart polling based on proximity to cleaning time 

3.​ Data Accuracy: 
○​ Challenge: SF street cleaning data may have gaps 
○​ Solution: Allow user corrections and community reporting 

4.​ Privacy Concerns: 
○​ Challenge: Managing location data securely 
○​ Solution: Implement proper encryption and data retention policies 

Would you like me to elaborate on any specific part of this plan? Or should we discuss the next 
steps to begin implementation? 
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