TEAM ROBOT LEAGUE STARTS HERE

LED BUTTON GAME
IMPLEMENTING ARRAYS AND CONTROL STATEMENTS IN JAVA

INTRODUCTION

In this project, you will use arrays and control statements to create a game that interacts with 6 LEDs and
6 buttons. Your goal is to write a program that generates a sequence of LED flashes and requires the
player to repeat the sequence by pressing the corresponding buttons.

REQUIREMENTS
HINTS
APPROPRIATE ALGORITHM STEPS

APPROPRIATE SETUP STEPS
STEP 1: SET UP THE HARDWARE
STEP 2: CREATE AN ARRAY FOR THE LED SEQUENCE
STEP 3: WRITE THE GAME LOGIC
STEP 4: CONTROL THE LED LIGHTS AND BUTTONS
STEP 5: TEST AND DEBUG
STEP 6: REFINE AND IMPROVE

HINT: USE OF ARRAYS

HINT: TO KEEP TRACK OF PROGRESS

Check if the Sequence is Completed: You can use an if statement to check if the sequence is completed.
For example:

HINT: USE OF CONTROL STATEMENTS
1. Debouncing:
2. Keep Track of Button State
3. Only Record the First Button Pressed:

HINT: BUZZER CODE EXAMPLE

Requirements

REQUIREMENTS
e 6LEDs
e 6 buttons
e A microcontroller (such as Arduino)
e Jumper wires
e Abreadboard
e A computer with the Java development environment set up

HINTS
e Usealoop (e.g., for, while) to generate the LED sequence
e Use the random class to generate random numbers for the LED sequence
e Use control statements (if, while) to control the game logic
e Use the digitalRead() and digitalWrite() functions to control the buttons and LEDs

APPROPRIATE ALGORITHM STEPS

Declare and initialise an array to store the sequence of LED flashes

Write a Java program that generates a new sequence of LED flashes for each round of the game
Use control statements (if, while) and the LED array to control the game logic

Use Java code to turn on and off the LED lights in the sequence

Monitor the player's button presses and compare them to the current sequence

Test your code on the microcontroller to make sure it works as expected

Refine and improve your code to make the game more engaging and challenging

No v,k wWwN =

APPROPRIATE SETUP STEPS

STEP 1: SET UP THE HARDWARE
e Connect 6 LEDs and 6 buttons to the microcontroller using jumper wires and a breadboard
e Connect the microcontroller to your computer

STEP 2: CREATE AN ARRAY FOR THE LED SEQUENCE
e Declare and initialise an array to store the sequence of LED flashes
e The array should have a length of 6 to match the number of LEDs
e Example:int[] sequence ={1, 3,5, 4, 2, 6},

STEP 3: WRITE THE GAME LOGIC

e Write a Java program that generates a new sequence of LED flashes for each round of the
game

e The program should monitor the player's button presses and compare them to the current
sequence

e The program should update the game status (e.g., game over, next round, etc.) based on
the player's button presses

e Hint: Use control statements (e.g., if, while) and the LED array to control the game logic

STEP 4: CONTROL THE LED LIGHTS AND BUTTONS
e Use Java code to turn on and off the LED lights in the sequence
e Monitor the player's button presses and compare them to the current sequence
e Hint: Use the digitalRead() and digitalWrite() functions to control the buttons and LEDs

STEP 5: TEST AND DEBUG
e Test your code on the microcontroller to make sure it works as expected
e Debug any issues that you encounter

STEP 6: REFINE AND IMPROVE
e Refine your code to make the game more engaging and challenging
e Add additional features or improvements, such as different levels of difficulty, different
game modes, etc.

HINT: USE OF ARRAYS
An array is a data structure that stores a collection of values. In Java, an array is declared with the syntax:
type[] name = {element1, element2, element3, ...};

For example, if you have an array of 6 integers to store the sequence of LED flashes, you can declare it as
follows: int[] sequence ={1, 3, 5, 4, 2, 6}
Techniques for working with an array

The sequence array contains 6 integers, each representing the sequence of the 6 buttons.
Your goal is to press the buttons in the correct order according to the sequence.

int[] sequence = {1, 3, 5, 4, 2, 6};

Iterating through the Array
You can use a for loop to go through each element in the sequence array. For example:

main()

{
int[] sequence = {1, 3, 5, 4, 2, 6};
playSequence(sequence);

}

void playSequence(int[] arr)

{

for (int i = @; i < arr.length; i++)

{

currentFlash = arr[i];
digitalWrite(currentFlash, HIGH);
delay(1000);
digitalWrite(currentFlash, LOW);

}

HINT: TO KEEP TRACK OF PROGRESS
You can use a variable to keep track of your progress in the sequence.

For example:

int progress = 0;
int currentVal = sequence[progress];

if (digitalRead(currentVal) == LOW)
{

progress ++;

Check if the Sequence is Completed: You can use an if statement to check if the sequence is completed.

For example:

if (progress == 6) {

HINT: USE OF CONTROL STATEMENTS
Control statements are used to control the flow of execution in a program. In this project, you will use the

following control statements:

e if: Used to make a decision based on a condition
e while: Used to repeat a block of code while a condition is true

Here are some hints on how to control the button so that it only records the first button pressed:

1. Debouncing:
Buttons can bounce when they are pressed, which can cause multiple readings to be recorded
even if the button is only pressed once. You can use the delay() function to add a small delay
between readings to reduce bouncing. For example:

int buttonState = digitalRead(buttonPin);
if (buttonState == LOW)

{
delay(10);

if (digitalRead(buttonPin) == LOW)

2. Keep Track of Button State
You can use a variable to keep track of the button state. For example:

int buttonState = digitalRead(buttonPin);
if (buttonState == LOW && !buttonPressed) {

buttonPressed = true;
} else if (buttonState == HIGH && buttonPressed) {

buttonPressed = false;

3. Only Record the First Button Pressed:
You can use an if statement to only record the first button pressed. For example:

if (buttonState == LOW && !buttonPressed)
{

buttonPressed = true;
if (progress == i)

{

progress++;

else if (buttonState == HIGH && buttonPressed)
{

buttonPressed = false;

}

HINT: BUZZER CODE EXAMPLE

int buzzer = 13;
int correctTone = 1000;
int incorrectTone = 500;

void setup()

{
pinMode(buzzer, OUTPUT);

}

void playCorrectTone()

{

tone(buzzer, correctTone);
delay(500);
noTone(buzzer);

}

void playIncorrectTone()

{

tone(buzzer, incorrectTone);
delay(500);
noTone(buzzer);

}

	
	REQUIREMENTS
	HINTS
	APPROPRIATE ALGORITHM STEPS
	
	APPROPRIATE SETUP STEPS
	
	STEP 1: SET UP THE HARDWARE
	STEP 2: CREATE AN ARRAY FOR THE LED SEQUENCE
	STEP 3: WRITE THE GAME LOGIC
	STEP 4: CONTROL THE LED LIGHTS AND BUTTONS
	STEP 5: TEST AND DEBUG
	STEP 6: REFINE AND IMPROVE

	
	
	HINT: USE OF ARRAYS
	
	
	HINT: TO KEEP TRACK OF PROGRESS
	
	Check if the Sequence is Completed: You can use an if statement to check if the sequence is completed.
	For example:
	
	
	HINT: USE OF CONTROL STATEMENTS
	1.​Debouncing:

	
	2.​Keep Track of Button State
	3.​Only Record the First Button Pressed:

	
	HINT: BUZZER CODE EXAMPLE

