
title: Fruits of the toolbox fallacy
plainTitle: Fruits of the toolbox fallacy
subtitle: How I moved this site to use Google Docs as a CMS
date: February 2023
[+content]

:newthought[I happened to see stuff around the web] about the so-called [“toolbox
fallacy.”](https://henningjust.wordpress.com/2019/10/11/the-toolbox-fallacy/) The idea is that
people avoid doing something they need to do by convincing themselves that they don’t have
the right tools to do it. I don’t have the right equipment, so I can’t exercise. I don’t like the pen I
have, so I can’t write. And so on. Even though I’m not sure whether real logicians or
philosophers talk about this fallacy, it seems to be a semi-popular topic on self-help websites
and YouTube channels.

But falling for the toolbox fallacy *can* yield interesting results. In particular, you might end up
with a shiny set of new tools, as I found out for myself recently. I hadn’t added any writing to this
site for a while, and clearly the problem was that the site wasn’t properly set up for me to write
well and easily. So of course my next step was to rework the site.

The Goal
The site was previously quite simple. Everything was pretty close to hand-written HTML, hosted
on Github Pages.:sidenote[You can find the repo backing this site
[here](https://github.com/gautamh/gautamh.github.io).]{#github-repo} I used a bit of
[mustache](https://mustache.github.io/) templating to eliminate repetitiveness in a few areas and
used SCSS for my styling, but other than that I was pretty directly writing the stuff that showed
up on the page.

I was particularly annoyed by the fact that every time I wanted to write a longer piece to put in
the “Thoughts” section:sidenote[Maybe once the number of posts here rises beyond
single-digits I will actually call this a blog rather than just a random collection of thoughts. You
shouldn’t hold your breath.]{#blog} of the site, I had to package whatever I wrote into HTML.
Piecing together HTML in an IDE is not particularly great for fluid writing and editing. This led me
to start off in Google Docs until I had what I thought was a final draft, convert the doc to HTML,
and then tediously edit the HTML when I wanted to make a change after the conversion.

Every time I had to do this, I kept thinking it would be just great if I could somehow write in
Google Docs and then magically have the contents of the doc show up, nicely formatted, on my

website. Essentially, I wanted to use Google docs as my CMS. This is of course not a new
concept. There are plenty of examples out there of Google Docs being jerry-rigged into a
website CMS.:sidenote[You can find
[example](https://css-tricks.com/using-google-drive-as-a-cms/) after
[example](https://twitter.com/davidwells/status/1356672763981778944) after
[example](https://github.com/sawyerclick/CMSvelte) of people doing this in various forms. I
could probably have started from one of those examples, but I did have a few custom
requirements, and I wanted to try making my own thing.]{#docs-example} So how hard could it
be?

Svelte
Step one to doing this was moving the site to some more standardized framework, rather than
just having raw HTML assembled with a templating tool. I didn’t really have a great idea or
strong opinions on what framework to use, and there were a bunch of reasonable options out
there. My one requirement was that I strongly preferred not to be in the business of running my
own server, either locally or in the cloud,:sidenote[I have heard too many [horror stories about
people waking up to massive surprise credit card
bills](https://chrisshort.net/the-aws-bill-heard-around-the-world/) from their cloud
provider.]{#cloud} so the framework had to be something that would compile my website into
static content that could be deployed on Github Pages. I ended up choosing Svelte, not for any
particular reason, other than that several of the other alternatives I looked at were React-based
and I felt like not using React.:sidenote[Really it was just a gut feeling, I did not have clearly
articulable reasons for making this decision (maybe I should have!)]{#reasons}

Setting up Svelte and moving my existing site to it was quite straightforward. Given that I was
using a templating setup before, I already had some rough outlines of what things could be
components and then how to use those components with the data for the site. Svelte allows
projects to be compiled with a static compiler, and Github also allows Github Pages to be
deployed based on Github Actions, so Github can automagically compile the site and deploy it
to Github pages every time a commit is pushed to the backing repo:![Github Action to deploy
Github pages run on repo commits](/img/github_pages_actions.png)

Pulling from Google Docs
Then came the interesting part: using Google Docs as a CMS. Actually, wiring my Svelte project
up to Google Docs so that it could pull content when the site was compiled worked pretty easily.
There are various Node packages out there that nicely wrap the process of calling Google’s
Node packages to get the content for a given Google Doc. I just had to make the docs I wanted

to pull from for the site publicly viewable and provide the doc ID to the library I was using to pull
the docs.:sidenote[The doc backing this page can be found
[here](https://docs.google.com/document/d/1y9aQZRNvJVzKGLuCKFFb3c_HyL6Tmdj2pT38dP
XiipA/edit?usp=sharing).]{#doc-link}

I did however pick a package that did a little more than just returning the contents of the doc. It
occurred to me that I might want more than just plain text from my Google Docs content. It might
be nice to have structured content for things like titles or metadata. Someday I might even want
to add an interactive that consumes structured data. To allow all this, I decided to parse the
contents of Google Docs I used as [ArchieML](http://archieml.org/), which is a structured text
format that allows structure to be added simply while still being easy to write. I used the
[doc-to-archieml Node package](https://github.com/rdmurphy/doc-to-archieml) to easily get the
contents of docs and parse them into JSON from ArchieML. The JSON contents could then be
processed for display on the page.

Formatting
I also wanted to easily specify formatting in my Google Docs. The obvious solution here is of
course to write Markdown, which is designed to allow text formatting from plain text, within the
structured pieces of my ArchieML docs. I saw that the MDsveX package allowed Markdown to
be mixed into Svelte components, which seemed great. However, I eventually realized that
MDsveX Svelte components [don’t seem to be able to load Markdown
dynamically](https://github.com/sveltejs/kit/issues/2014), rather the Markdown has to be
specified directly in the component definition. This obviously doesn’t work if I want to pull my
Markdown from a Google doc.

Eventually I decided to use the MDsveX’s Markdown compiler as a library and then provide the
result as raw HTML to my (standard) Svelte components. This was a little janky,:sidenote[...then
again, so is this whole thing...]{#janky} but worked reasonably well to a first approximation.
However there were issues with some specific elements that either didn’t render as I wanted or
which needed to be expressed in non-standard ways with the CSS framework I was
using.:sidenote[which is my own flavor of [Tufte
CSS](https://edwardtufte.github.io/tufte-css/)]{#tufte} Footnotes in particular required a more
custom treatment than just the standard Markdown compiler.

To handle this issue, I added Remark and Rehype plugins to the compiler. These let me define
my own custom markup handling for elements that required custom handling beyond the
standard Markdown compiler. The

[remark-directive](https://github.com/remarkjs/remark-directive) plugin even allowed me to use
my own custom Markdown syntax for elements that just aren’t available in standard Markdown.
For example, I was able to add syntax for the “newthought” element available in Tufte CSS:

```js 
 function tufteRemarkDirective() { 
     return (tree, file) => { 
       visit(tree, (node) => { 
         if ( 
           node.type === 'textDirective' || 
           node.type === 'leafDirective' || 
           node.type === 'containerDirective' 
         ) { 
           const data = node.data || (node.data = {}) 
           const attributes = node.attributes || {} 
           const id = attributes.id 
   
           if (node.name === 'newthought') { 
             data.hName = 'span' 
             data.hProperties = { 
               class: 'newthought', 
             } 
           } 
           else return; 
         } 
       }) 
     } 
   } 
``` 

Deployment
At this point, I pretty much had a working Google Docs-as-CMS setup running locally that did
the things I wanted it to do. But I didn’t want this to run locally, I wanted to push the Svelte code
to Github and then have Github compile and deploy the site to Github Pages. Github makes this
fairly easy in the basic case, but things get a little trickier when you want the site compilation
process to fetch data from Google Docs. I had to include Google credentials in the repository
without making them available to everyone. Luckily Github has a Secrets feature which allows

this, even if it is a little more complicated than it should be. I then added an
[action](https://github.com/jsdaniell/create-json) to my deploy configuration to copy the secrets
into an env file during deployment.

Of course, the deployment process didn’t work the first time I tried it, and debugging from Github
deployment logs can be cryptic and tedious. Again, however, the ecosystem of Github Actions
comes to the rescue. As it turns out there is a [fantastic Github
Action](https://github.com/marketplace/actions/debuggging-with-tmate) that will let you run a
tmate session in the environment that is running your deployment and connect to the session
remotely. This allows full inspection of the deployment outputs, which greatly simplifies the
debugging process.:sidenote[The attached terminal also lets you do things like see secrets used
in the deployment process, which are automatically scrubbed from the debug logs Github
provides by default.]{#secrets}

I now finally had a fully deployed site, with a complete setup that looked something like
this:![Site architecture](/img/site_architecture.png)

Remaining issues

And so that was it, everything was working! Well, almost…there are still a few minor issues
hanging around.:sidenote[If you have tips on how to fix any of these issues, please do drop me
a line at gautamhathi[at]gmail[dot]com.]{#email} The first one came up when I did the initial
move of the site to Svelte. I use [Fancybox](https://fancyapps.com/docs/ui/fancybox/) gallery to
showcase photos on my site, but something seems to have broken Fancybox during the move
to Svelte, and I can’t quite figure out what. When opening images that were supposed to be
handled by a Fancybox gallery I got errors saying “Attempted to preload a URL that does not
belong to this app” and the browser just navigated to the image file rather than presenting it in a
nice gallery. I saw some suggestions that I could add a `data-sveltekit-preload-data="off"`
attribute to the image link elements, but that didn’t seem to fix the issue.

The other still-lingering weird issue is with formatted code blocks. For some reason, spaces at
the start of lines in code blocks don’t seem to show up. The way I’ve gotten around this is by
adding zero-width characters at the start of lines in code blocks, so they don’t technically start
with spaces. As a result the issue doesn’t end up being something that is visible on pages, but
it’s still annoying to deal with.

There is, as always, more work to do. Of course, the code needs tests. Given that it’s just me
working on this and the codebase is pretty small (at least for now), I don’t feel too bad about
putting those off, but code without tests generally leaves me feeling nervous. Additionally, it
would probably be good to move the js portions of the code to Typescript, which is something
else I didn’t feel like dealing with right now.

Farther in the future, I have thought about the fact that the current setup doesn’t provide great
content versioning. Changes to the docs show up on the site when the Github Action deploying
to Github Pages is run and are not tied to repo commits. This is a rather tricky problem to solve,
though, as while it might be possible to have the deploy Action commit doc changes to the repo,
the repo commits with doc updates could easily get out of sync from the doc state. But I
currently have no need for precise versioning of my content tied to versioning of the site, so this
isn’t something I’m too concerned about for now.

And of course, after doing all this, it would be good to write some more for the Thoughts section
of this website. The toolbox is complete, right? At the moment however, I can’t really think of
anything great to write, so I wrote this instead.

:ignore
With the help of a generic templating tool. I wasn’t really sure what ![Drag
Racing](https://cdn.pixabay.com/photo/2016/11/19/14/00/code-1839406_1280.jpg)

Mdsvex templates don’t seem to be able to take in markdown from parameters (so have to
compile instead)
Need to use remark + rehype plugins to handle things that aren’t standard markdown
(specifically newthought elements and sidenotes). Rehype is needed for sidenotes because we
need a single md element into multiple html elements
Compiler doesn’t seem to work with Svelte components
Weird issue with code blocks when compiling: https://github.com/pngwn/MDsveX/issues/392
Spaces at the start of lines in fenced code blocks don’t work (solution is use invisible chars at
the start of the line, though can’t just have a remark plugin add them at the start of all lines in
the block)
Deployment issues: how to get secrets into github actions (repository secrets vs environment
secrets, env files:
https://stackoverflow.com/questions/60176044/how-do-i-use-an-env-file-with-github-actions,
json creation tools: https://github.com/jsdaniell/create-json), how to debug (do you just add

https://github.com/pngwn/MDsveX/issues/392

logging with a bunch of commits? Actually you can add tmate sessions, including on failure:
https://github.com/marketplace/actions/debugging-with-tmate)

