
Promise Hooks Proposal 
Note that this document is publicly accessible. 
Author: yangguo@google.com, bmeurer@google.com, ofrobots@google.com 
Issue: https://github.com/nodejs/diagnostics/issues/188 
Last updated: 2018-05-02 

Motivation 
Promise hooks in Node.js is part of Async hooks, a way to track the context across 
asynchronous operations. 
 
In its current implementation, Promise hooks can cause significant performance degradations. 
In some cases enabling Promise hooks can regress performance by up to 70%. This is not 
acceptable in use cases where Promise hooks are enabled in production. 
 
In this document we want to discuss ways to reduce the overhead for Promise hooks. 

Status quo 
When enabling Promise hooks, Node uses v8::Isolate::SetPromiseHook to add a C++ callback 
to V8. For every Promise created in that V8 Isolate, V8 will call the callback for the following 
events in the Promise lifecycle: 
 

●​ kInit: when the Promise is created. Maps to the init hook. 
●​ kResolve: when the Promise is resolved. Maps to the promiseResolve hook. 
●​ kBefore: before the Promise reaction job is executed. Maps to the before hook. 
●​ kAfter: after the Promise reaction job is executed. Maps to the after hook. 

 
In addition, Node also implemented a destroy hook for when the Promise object has been 
garbage collected. To implement this destroy hook, Node creates a weak global handle for 
every Promise in kInit. 
 
For each of these five hooks, Node calls JavaScript callbacks to dispatch to hooks installed by 
the user. 

Performance Issues 
This design has several issues that contribute to bad performance. Also read this document for 
details. 

mailto:yangguo@google.com
mailto:bmeurer@google.com
mailto:ofrobots@google.com
https://github.com/nodejs/diagnostics/issues/188
https://docs.google.com/document/d/1245l8iSb6N6FL6_-m0PHhrdWoW_OOgFeWntJcSe1UfE/edit?ts=5ab35eab#


 
●​ According to spec, every await call creates four Promises, some of which are not 

observable from JavaScript, but are now through Promise hooks. 
●​ For every Promise, Node creates a C++ wrapper object. 
●​ Each wrapper object also creates a weak global handle. This adds additional overhead 

for the garbage collector and additional callbacks to perform the destroy hook. 
●​ During the lifetime of every Promise V8 triggers the callback four times. 
●​ For every callback, V8 enters C++, and from there re-enters JavaScript. Both are not 

particularly cheap to perform. 

Other Issues 
The fact that the Promise hook is installed on the Isolate rather than on a native context means 
that Promises created in every native context will trigger the same Promise hook callback. That 
results in issues such as this one, where an unexpected native context causes the Promise 
hook callback to crash. 

Assumptions 
We made some assumptions as basis for our proposal to lessen the performance impact. 
 

●​ Use cases that use async hooks only use the destroy hook to dispose metadata (see 
these examples). 

●​ Use cases that use the destroy hook to perform more work than just disposing metadata 
do not need to track the destroy event for every Promise created during await call. 

●​ Promises that are not observable from JavaScript are not interesting to async hooks. 

Proposals 

Separate destroy hook 
We propose to remove the destroy hook and to add the async resource to the remaining async 
hooks. (Or not create weak global handle if the destroy hooks is not installed). 
 
One class of uses keep metadata for every async operation and map the async id to the 
metadata. The destroy hook is necessary to clean up the metadata. Relying on the after hook is 
not sufficient, since Promise objects could be garbage collected before they are resolved. 
 
For every four PromiseHook types, V8 provides the affected Promise object to the callback. Of 
the corresponding async hooks, each one provides the async id, but only the init hook provides 

https://tc39.github.io/ecma262/#await
https://github.com/nodejs/node/pull/19134#pullrequestreview-110660224
https://github.com/Jeff-Lewis/cls-hooked/blob/066c6c4027a7924b06997cc6b175b1841342abdc/context.js#L424
https://github.com/elastic/apm-agent-nodejs/blob/9d25c883d30e708eecc102acd878c23da395cbdf/lib/instrumentation/async-hooks.js#L33
https://github.com/GoogleCloudPlatform/cloud-trace-nodejs/blob/6e46ed17725b9003e4975f37f6d2cde73e07c811/src/cls/async-hooks.ts#L57
https://nodejs.org/api/async_hooks.html


the async resource object (a wrapper object for the affected Promise). Users of these hooks that 
keep additional metadata need to map the id to the metadata. The destroy hook is required to 
remove this mapping and release the metadata. 
 
If the async resource is passed not only to init, but also to the other hooks, user code could use 
a WeakMap to map the resource to the metadata, or store the metadata on the resource 
directly. (Also an executionAsyncResource next to executionAsyncId). This removes the need 
for a destroy hook to release the metadata. Internally, Node.js would use a WeakMap to map 
the Promise provided by V8’s PromiseHook callback to the resource. 
 
The benefits of this change is that we no longer have to create a weak global handle for every 
Promise. If the async resource is created in JavaScript too, then we no longer have to enter 
C++ for the init hook, and no longer need to call a C++ finalizer for every Promise. 
 
For the second class of uses, the destroy hook is used to perform actions that go beyond 
keeping track of metadata. A finalizer has to run. We suggest to use finalizers in the WeakRef 
language proposal instead. Until WeakRef is implemented in V8, a polyfill based on weak global 
handles can serve as a stop gap solution. 
 
We find that it is reasonable to pay the price in form of performance for this second class of 
uses for the provided flexibility. 

JavaScript instead of C++ callbacks 
Assuming that we no longer have to call into C++ to wrap the Promise object and install a weak 
global handle to implement the destroy hook, we can now directly call into JavaScript. 
 
We propose to change V8’s PromiseHook API to take four v8::Function objects as arguments, 
one for every Promise hook type. On Promise events, V8 can directly call these functions 
without paying the cost for entering C++ and re-entering JavaScript. 
 
Since v8::Function objects are context-dependent, it is natural that Promise hooks are installed 
onto the native context instead of applying Isolate-wide. This also solves the previously 
mentioned issue with unexpected native context. 
 
The benefit is that we can avoid crossing the C++/JavaScript boundary, which enables further 
optimizations. Having Promise hooks in JavaScript may enable optimizations such as inlining in 
the future. 

https://github.com/tc39/proposal-weakrefs/blob/master/specs/weakrefs.md
https://github.com/tc39/proposal-weakrefs/blob/master/specs/weakrefs.md


Only trigger hooks for observable Promises 
Some Promises that are only created as part of implementation detail prescribed by the spec 
and are not usually interesting to users of async hooks. E.g. the throwAwayCapability at step 10 
of the specification of await. 
 
We propose to not trigger hooks for these unobservable Promises. 

Add specification and tests 
The current test coverage for Promise hooks is very sparse. Given the long turnaround time 
between landing a V8 change and propagating it to Node.js, and users wanting to rely on async 
hooks, this is a very bad situation. 
 
We would welcome to see a spec text based on the ECMA262 spec regarding when hooks 
should be fired, and how async IDs should be assigned. Tests are essential not only to catch 
regressions, but also to provide help for implementations in other VMs. 

Timeline 
These proposals are breaking changes that need to be implemented before async hooks move 
out of experimental. V8 will implement the new API based on v8::Function callbacks, as well as 
behavior changes as discussed above. 
 
V8 6.9 goes stable on 2018-09-04, and branches on 2018-07-19. 
V8 7.0 goes stable on 2018-10-16, and branches on 2018-08-30. 
 
Depending on which V8 version the initial release of Node 11 chooses, we have 11 to 17 weeks 
from now, if we want to be ready for Node 11. 
 
Changes on Node’s side have time until the actual release of Node 11, which includes using the 
new API provided by V8, removing the destroy hook and Promise wrapping, and offering a stop 
gap solution for weak callbacks. 
 
Passing the resource through the hooks can be implemented for Node 10 and maybe even 
backported to Node 8. 

https://tc39.github.io/ecma262/#await


Alternatives considered 

Do nothing 
Promise hooks are a powerful and intrusive instrumentation into V8. There have already been 
some efforts to improve Promise performance, some of which help with Promise hooks, but 
most do not, since it prevents certain shortcuts. 
 
We could argue that the impact on performance is a fair price to pay for this level of 
intrusiveness. 

A subset of the above 
While each of the three proposals are breaking changes, they are somewhat orthogonal to each 
other and can be implemented independently from each other. 

Make Promise constructor monkey-patchable 
This has been discussed here. 
 
This moves the instrumentation entirely to Node.js, and avoids some of the performance costs 
paid to enter and leave C++. The API to enable this does not have to be exposed to JavaScript 
in order to avoid violating the ECMA262 spec. 
 
However, the potential for performance improvement through this seems limited. 
 
This does not solve the performance issues around the destroy hook. 

Revive Zones proposal 
Zones as proposed here are designed to solve the async context tracking issue, but at a higher 
level and is less powerful than async hooks. If integrated into the ECMA262 spec, performance 
overhead could be reduced a lot. 
 
However, it is unclear whether Zones will have a chance at TC39. And even if it does, how long 
it will take to reach stage 4. In the best case, it will take at least a year until it becomes ready. 
 
Zones also do not offer a destroy hook. 
 

https://github.com/nodejs/diagnostics/issues/142
https://github.com/domenic/zones

	Promise Hooks Proposal 
	Motivation 
	Status quo 
	Performance Issues 
	Other Issues 
	Assumptions 
	Proposals 
	Separate destroy hook 
	JavaScript instead of C++ callbacks 
	Only trigger hooks for observable Promises 
	Add specification and tests 

	Timeline 
	Alternatives considered 
	Do nothing 
	A subset of the above 
	Make Promise constructor monkey-patchable 
	Revive Zones proposal 


