	•
Taxa de calor por condução	$q_{cd} = k A \frac{\Delta T}{\Delta x}$
Taxa de calor por convecção	$q_{cv} = Ah(T_s - T_{\infty})$
Taxa de calor emitido pela superfície	$q_e = A \epsilon \sigma T_s^4$
Taxa de calor absorvido pela superfície	$q_a = A lpha \sigma T_{viz}^4$
Taxa de calor radiante	$q_{rd} = q_e - q_a$
Constante de Stephan-Boltzmann	$\sigma = 5,67 \times 10^{-8} \text{ W/(m}^2 \cdot \text{K}^4)$
Taxa de calor radiante para superfícies cinzentas (Emissividade = Absortividade)	$q_{rd} = A$ εσ $(T_s^4 - T_{viz}^4)$
Taxa de calor radiante para superfícies cinzentas (Emissividade = Absortividade) na forma linearizada	$q_{rd} = Ah_{rd}(T_s - T_{viz})$ $h_{rd} = \varepsilon\sigma(T_s^* + T_{viz})(T_s^{*2} + T_{viz}^2)$
Resistência térmica por condução em superfície plana	$R_{t,\text{cond}} \equiv \frac{T_{s,1} - T_{s,2}}{q_x} = \frac{L}{kA}$
Resistência térmica por condução em superfície cilíndrica	$R_{t,\text{cond}} = \frac{\ln\left(r_2/r_1\right)}{2\pi L k}$
Resistência térmica por condução em superfície esférica	$R_{t,\text{cond}} = \frac{1}{4\pi k} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$
Resistência térmica por convecção	$R_{t,\text{conv}} \equiv \frac{T_s - T_{\infty}}{q} = \frac{1}{hA}$
Resistência térmica por radiação	$R_{t,\text{rad}} = \frac{T_s - T_{\text{sur}}}{q_{\text{rad}}} = \frac{1}{h_r A}$
Resistência térmica de contato	$R_{t,c}'' = \frac{T_{\rm A} - T_{\rm B}}{q_x''}$
MCG: tempo necessário para atingir-se determinada temperatura	$\frac{\rho Vc}{hA_s} \ln \frac{\theta_i}{\theta} = t$
MCG: temperatura atingida após passado determinado tempo	$\frac{\theta}{\theta_i} = \frac{T - T_{\infty}}{T_i - T_{\infty}} = \exp\left[-\left(\frac{hA_s}{\rho Vc}\right)t\right]$
Parede plana de Número de Biot $^{ m espessura~2L}$ $L_c\equiv L$ Cilindro longo $L_c\equiv r_o/2$	$\frac{(L/kA)}{(1/hA)} = \frac{R_{t,\text{cond}}}{R_{t,\text{conv}}} = \frac{hL}{k} \equiv Bi$
Esfera $L_c \equiv r_o/3$	$Bi = \frac{hL_c}{k} < 0.1$
Número de Fourier	$Fo \equiv \frac{\alpha t}{L_c^2}$
Efeitos espaciais – placa plana	
Placa plana $\theta^* = \sum_{n=1}^{\infty} \frac{4 sen \lambda_n}{2 \lambda_n + sen(2 \lambda_n)} e^{-\lambda_n^2 f_0} \cos \frac{\lambda_n x}{L}$	No plano central (x=0) $\theta^* = \frac{T - T_{\infty}}{T_0 - T_{\infty}} = \frac{4sen\lambda_1}{2\lambda_1 + sen(2\lambda_1)}e^{-\lambda_1^2 Fo}$
	<u> </u>

Efeitos espaciais – cilindro	Na linha central (r=0)
Cilindro $\theta^* = \sum_{n=1}^{\infty} \frac{2}{\lambda_n} \cdot \frac{J_1(\lambda_n)}{J_0^2(\lambda_n) + J_1^2(\lambda_n)} e^{-\lambda_n^2 F_0} J_0\left(\frac{\lambda_n r}{r_0}\right)$	$\theta^* = \frac{T - T_{-}}{T_0 - T_{-}} = \frac{2}{\lambda_1} \cdot \frac{J_1(\lambda_1)}{J_0^2(\lambda_1) + J_1^2(\lambda_1)} e^{-\lambda_1^2 F_0}$
Efeitos espaciais - esfera	No centro (r=0)
Esfera $\theta^* = \sum_{n=1}^{\infty} \frac{4(\operatorname{sen}\lambda_n - \lambda_n \cos \lambda_n)}{2\lambda_n - \operatorname{sen}(2\lambda_n)} e^{-\lambda_n^2 F_0} \frac{\operatorname{sen}(\lambda_n r/r_0)}{\lambda_n r/r_0}$	$\theta^{\circ} = \frac{T - T_{\infty}}{T_0 - T_{\infty}} =$ $= \frac{4(sen\lambda_1 - \lambda_1 \cos \lambda_1)}{2\lambda_1 - sen(2\lambda_1)} e^{-\lambda_n^2 F_0}$
Número de Reynolds – escoamento externo	$Re_x = \frac{\rho u_\infty x}{\mu}$ $Re_{x,c} \equiv \frac{\rho u_\infty x_c}{\mu} = 5 \times 10^5$
Número de Reynolds – escoamento interno	
	$Re_{D} = \frac{\rho u_{m}D}{\mu} = \frac{u_{m}D}{\nu}$ $Re_{D,c} \approx 2300$ $Re_{D} = \frac{4\dot{m}}{\pi D\mu}$
Número de Prandtl	$Pr = \frac{\nu}{\alpha}$
Número de Nusselt	$Nu \equiv \frac{hL}{k_f} \qquad \overline{Nu} = \frac{\overline{h}L}{k_f}$
Placa plana com escoamento cruzado – escoamento laminar e placa plana isotérmica	$Nu_x = \frac{h_x x}{k} = 0.332 \ Re_x^{1/2} P r^{1/3} \qquad Pr \ge 0.6$
	$\overline{Nu}_x \equiv \frac{\overline{h}_{x}x}{k} = 0,664 Re_x^{1/2} Pr^{1/3} Pr \gtrsim 0,6$
Placa plana com escoamento cruzado – escoamento laminar e placa plana isotérmica. Qualquer valor de Prandtl	$Nu_x = \frac{0.3387 Re_x^{1/2} Pr^{1/3}}{[1 + (0.0468/Pr)^{2/3}]^{1/4}} \qquad \overline{Nu_x} = 2Nu_x$
Escoamento Turbulento sobre uma placa isotérmica	$Nu_x = 0.0296 Re_x^{4/5} Pr^{1/3} 0.6 \lesssim Pr \lesssim 60$
Transição próxima à saída da placa (isotérmica): usar correlação de escoamento laminar (médio)	$0.95 \lesssim (x_c/L) \lesssim 1$
Escoamento misto sobre placa isotérmica	$ \overline{Nu}_{L} = (0.037 Re_{L}^{4/5} - A) Pr^{1/3} $ $ \begin{bmatrix} 0.6 \lesssim Pr \lesssim 60 \\ Re_{x,c} \lesssim Re_{L} \lesssim 10^{8} \end{bmatrix} $ $ A = 0.037 Re_{x,c}^{4/5} - 0.664 Re_{x,c}^{1/2} $
Escoamento completamente turbulento sobre placa isotérmica	$ \overline{Nu}_{L} = (0.037 Re_{L}^{4/5} - A) Pr^{1/3} \begin{bmatrix} 0.6 \lesssim Pr \lesssim 60 \\ Re_{x,c} \lesssim Re_{L} \lesssim 10^{8} \end{bmatrix} (Re_{x,c} = 0), A = 0. $
Escoamento laminar sobre placa com fluxo térmico constante	$Nu_x = 0.453 Re_x^{1/2} Pr^{1/3}$ $Pr \gtrsim 0.6$
Escoamento turbulento sobre placa com fluxo térmico constante	$Nu_x = 0.0308 Re_x^{4/5} Pr^{1/3}$ $0.6 \lesssim Pr \lesssim 60$

Escoamento externo cruzado em cilindro, médio, Pr>0,7 – Seção transversal circular (Hilpert)	$\overline{Nu}_D \equiv \frac{\overline{h}D}{k} = CRe_D^m Pr^{1/3}$				
	Re_D		С	m	
	0.4-4		0.989	0.330	
	4-40 40-4000		0.911 0.683	0.385 0.466	
	4000-40,000		0.193	0.618	
	40,000-400,000		0.027	0.805	
Escoamento externo cruzado em cilindro, médio, Pr>0,7 –	Geometry		Re _D	C m	
Seção transversal com diferentes geometrias (Hilpert)	Square $V \longrightarrow D$	60	000–60,000	0.304 0.59	
	$V \rightarrow \boxed{\begin{array}{c} \vdots \\ \hline \end{array}} D$		000–60,000	0.158 0.66	
	Hexagon	51	200–20,400	0.164 0.638	
			400–105,000	0.039 0.78	
	$V \rightarrow \left\langle \begin{array}{c} I \\ I \\ I \end{array} \right\rangle$	45	600–90,700	0.150 0.638	
	Thin plate perpendicular $V \longrightarrow \begin{bmatrix} & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$	Front 10,0	000–50,000 000–80,000	0.667 0.500 0.191 0.667	
Essamenta externa cruzada em cilindra média Draga		7(-/2 -/2 F	. 74	
Escoamento externo cruzado em cilindro, médio, Pr>0,2 - Seção transversal circular (Churchill e Bernstein):	$\overline{Nu}_D = 0.3 +$	$+\frac{0.62 R}{[1+(0.4)]}$	$\frac{e_D^{1/2} P r^{1/3}}{4/P r)^{2/3}]^{1/4} \bigg[1 +$	$\left(\frac{Re_D}{282,000}\right)^{5/8}$	
Escoamento externo em esfera, médio. Todas as propriedades em T_∞ , exceto μ_s , na T_s :	$\overline{Nu}_D = 2 + (0.4 Re_D^{1/2} + 0.06 Re_D^{2/3}) Pr^{0.4} \left(\frac{\mu}{\mu_s}\right)^{1/4}$				
		$0.71 \lesssim Pr$ $3.5 \lesssim Re_D$ $1.0 \lesssim (\mu/p)$	$\begin{array}{l} \lesssim 380 \\ \lesssim 7.6 \times 10^4 \\ u_s) \lesssim 3.2 \end{array}$		
Fluxo térmico constante na superfície	$q_{ m conv} = q_s''(P \cdot$	L)			
Temperatura constante na superfície	$q_{\rm conv} = \overline{h} A_s \Delta$	$\Delta T_{ m lm}$	$T_{\rm ml} \equiv \frac{\Delta T_{\rm sai} - \Delta T_{\rm ent}}{\ln{(\Delta T_{\rm sai}/\Delta T_{\rm ent})}}$	Ō	
Escoamento interno em tubo circular, fluxo térmico constante, laminar desenvolvido	$Nu_D \equiv \frac{hD}{k} =$	4.36			
Escoamento interno em tubo circular, temp. constante, laminar desenvolvido	$Nu_D = 3.66$				
Escoamento interno em tubo não-circular, temp. constante ou fluxo térmico constante, laminar desenvolvido	$D_h = \frac{4A_{transv}}{P}$				
, and the second	Cross Section	$\frac{b}{a}$	(Uniform q'' _s)	(Uniform T _s)	
		_	4.36	3.66	
	a	1.0	3.61	2.98	
	a	1.43	3.73	3.08	
	a	2.0	4.12	3.39	
	a	3.0	4.79	3.96	
	ab	4.0	5.33	4.44	
	a	8.0	6.49	5.60	

Escoamento interno em tubo circular ou não-circular, fluxo ou temperatura constante na superfície, turbulento e desenvolvido (Dittus-Boellter):	$Nu_D=0.023~Re_D^{4/5}~Pr^n$ n=0,4 para aquecimento n=0,3 para resfriamento $0.6 \lesssim Pr \lesssim 160$ $Re_D \gtrsim 10,000$			
Escoamento interno em tubo circular, fluxo ou temperatura constante na superfície, turbulento e desenvolvido com grandes variações nas propriedades (Sieder e Tate):	$Nu_D = 0.027 \ Re_D^{4/5} \ Pr$	$1/3 \left(\frac{\mu}{\mu_s}\right)^{0.14}$ $0.7 \lesssim Pr \approx Re_D \gtrsim 10$	≤ 16,700 000	
Escoamento interno Região Anular: escoamento laminar desenvolvido, com uma superfície isolada e a outra com temperatura constante:	$Nu_i = \frac{h_i D_h}{k}$			
	$Nu_e \equiv \frac{h_e D_h}{k}$	$D_{h} = \frac{4(\pi/4)(D_{e}^{2} - D_{e}^{2})}{\pi D_{e} + \pi D_{i}}$	$\frac{\binom{2}{i}}{} = D_e - D_i$	
	D_i/D_e	Nui	Nu _e	
	0	_	3,66	
	0,05	17,46	4,06	
	0,10	11,56	4,11	
	0,25	7,37	4,23	
	0,50	5,74	4,43	
	≈1,00	4,86	4,86	
Escoamento interno Região Anular: turbulento, considera-se que os coeficientes de transferência de calor na superfície interna e externa são iguais, sendo obtidos pela equação de Dittus-Boleter, empregando o D _h .	$Nu_D = 0.023 Re_D^{4/5}$	n=0,4 para aquec n=0,3 para resfria		

D:	Placa plana	Cilindro	Esfera
Bi	λ_1	λ_1	λ_1
0,01	0,0998	0,1412	0,1730
0,02	0,1410	0,1995	0,2445
0,04	0,1987	0,2814	0,3450
0,06	0,2425	0,3438	0,4217
0,08	0,2791	0,3960	0,4860
0,1	0,3111	0,4417	0,5423
0,2	0,4328	0,6170	0,7593
0,3	0,5218	0,7465	0,9208
0,4	0,5932	0,8516	1,053
0,5	0,6533	0,9408	1,166
0,6	0,7051	1,018	1,264
0,7	0,7506	1,087	1,353
0,8	0,7910	1,149	1,432
0,9	0,8274	1,205	1,504
1	0,8603	1,256	1,571
2	1,077	1,599	2,029

3	1,192	1,789	2,289	1,6	0,4554	0,5699
4	1,265	1,908	2,456	1,7	0,3980	0,5778
5	1,314	1,990	2,570	1,8	0,3400	0,5815
6	1,350	2,049	2,654	1,9	0,2818	0,5812
7	1,377	2,094	2,716	2	0,2239	0,5767
8	1,398	2,129	2,765	2,1	0,1666	0,5683
9	1,415	2,157	2,804	2,2	0,1104	0,5560
10	1,429	2,179	2,836	2,3	0,0555	0,5399
15	1,473	2,251	2,935	2,4	0,0025	0,5202
20	1,496	2,288	2,986	2,5	-0,0484	0,4971
25	1,510	2,311	3,017	2,6	-0,0968	0,4708
30	1,520	2,326	3,037	2,7	-0,1424	0,4416
40	1,533	2,346	3,063	2,8	-0,1850	0,4097
45	1,537	2,352	3,072	3	-0,2601	0,3391
50	1,540	2,357	3,079	3,2	-0,3202	0,2613
100	1,555	2,381	3,110	3,4	-0,3643	0,1792
200	1,563	2,393	3,126	3,6	-0,3918	0,0955
500	1,568	2,400	3,135	3,8	-0,4026	0,0128
1000	1,569	2,402	3,138	4	-0,3971	-0,0660