

Time: 03 Hours**Maximum Marks: 60****Instruction for candidates:**

1. Section A is compulsory. It consists of 10 parts of two marks each.
2. Section B consist of 5 questions of 5 marks each. The student has to attempt any 4 questions out of it.
3. Section C consist of 3 questions of 10 marks each. The student has to attempt any 2 questions.

Section – A **(2 marks each)**

Q1. Attempt the following:

- If $y = \sin \sin (m x)$, prove that $(1 - x^2) y_2 - x y_1 + m^2 y = 0$.
- If $y = a^{2x} + \frac{x}{2x-1}$, find y_n .
- If there is a possible error of 0.02 cm in the measurement of the diameter of a sphere, then find the possible percentage error in its volume, when the radius is 10 cm.
- Prove that the curve $y = \log \log x$ is everywhere concave downwards for $x > 0$.
- Examine the nature of origin for the curve $y^2 = 2x^2 y + x^4 y - 2x^4$.
- Find the asymptotes parallel to the axes of the curve $x^2 y^2 + y^2 = 1$.
- If $u(x, y) = x^2 (y/x) - y^2 (x/y)$, $x > 0$, $y > 0$, then evaluate $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.
- Show that the variables $u = x - y + z$, $v = x + y - z$, $w = x^2 + xz - xy$, are functionally related. Find the relationship between them.
- Show that $dV = \vec{dr} \cdot \nabla V$
- Find the normal to the surface $2xz^2 - 3xy - 4x = 7$ at $(1, -1, 2)$.

Section – B **(5 marks each)**

Q2. If $y = (x)^2$, find $y_n(0)$.Q3. Find the intervals in which the curve $y = (\cos \cos x + \sin \sin x) e^x$ is concave upward or downwards in $(0, 2\pi)$. Find also the points of inflexion.Q4. Prove that the radius of curvature at any point $P(x, y)$ on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\frac{a^2 b^2}{p^3}$, where p is the length of perpendicular from the centre of ellipse on the tangent at P .Q5. If $z = f(u, v)$ where $u = e^x \cos \cos y$, $v = e^x \sin \sin y$, show that

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (u^2 + v^2) \left(\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2} \right)$$

Q6. Show that of all triangles inscribed in a circle, the one with maximum area is equilateral.

Section – C **(10 marks each)**

- Find asymptotes of the curve $x^2 y - x y^2 + x y + y^2 + x - y = 0$.
- Find the n th derivative of $\sqrt{ax + b}$.
- In the curve $y = a \log \log \sec \sec \left(\frac{x}{a} \right)$, prove that the chord of curvature parallel to the axis of y is of constant length.

(b). Let $f(x, y) = (\sin \sin x, \cos \cos y)$ and $g(x, y) = (x^2, y^2)$. Let $F = fog$. Evaluate $J_F(x, y)$ and verify the result by direct differentiation.

Q9. (a). If \vec{F} is a solenoidal vector, show that:

$$\text{curl curl curl curl } \vec{F} = \nabla^2 \nabla^2 \vec{F} = \nabla^4 \vec{F}.$$

(b). Find the maximum and minimum value of $x^2 + y^2$ subject to the condition:
$$3x^2 + 4xy + 6y^2 = 140.$$