TEMA 5: MATERIALES PLÁSTICOS, TEXTILES, PÉTREOS Y CERÁMICOS.

1.- Materiales plásticos

Los plásticos ocupan un lugar_destacado en el desarrollo de sectores como el de los envases y embalajes, las telecomunicaciones, el transporte, la construcción, la medicina, la agricultura o las tecnologías de la información, y, en general, forman parte de nuestra vida diaria.

-Los **plásticos** son materiales formados por polímeros constituidos por largas cadenas de átomos que contienen carbono. http://lema.rae.es/drae/?val=polimeros

1.1.- Origen de los plásticos

Según su procedencia, los plásticos pueden ser naturales o sintéticos:

- <u>Plásticos naturales:</u> se obtiene directamente de materias primas vegetales(la celulosa, el celofán y el látex) o animales (caseína, una de las principales proteinas de la leche de vaca)

-<u>Plásticos sintéticos o artificiales:</u> se elaboran a partir de compuestos derivados del petróleo, el gas natural o el carbón. La mayoria de los plásticos pertenecen a este grupo.

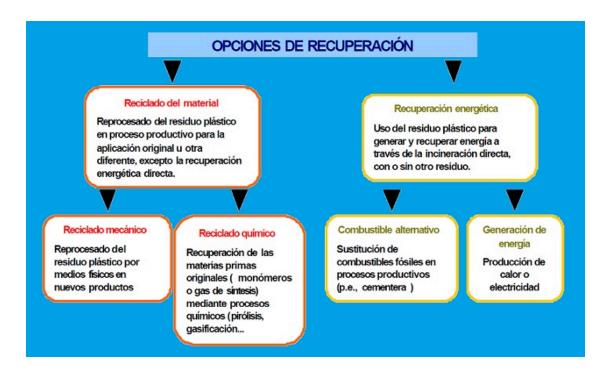
1.2.- Transformación de los plásticos

La transformación industrial de esas materias primas y compuestos en plásticos se denominan **polimerización**.

- -Durante la fabricación de los plásticos se añaden las denominadas cargas. Se trata de materiales como la fibra de vidrio, las fibras textiles, el papel, la sílice, el polvo mineral o el serrín, que, además de reducir los costes de producción, potencias algunas propiedades de la materia prima o compuestos iniciales.
- -Se incorporan también algunos aditivos (sustancias químicas), como, por ejemplo, plastificantes, para incrementar la flexibilidad y la resistencia del polímero, o pigmentos, para conferir a los plásticos un color determinado.

1.3.- Propiedades

Las propiedades de los plásticos dependen de su naturaleza y composición.


-Propiedades físicas

Como habrás podido comprobar, la dureza, la elasticidad, la rigidez, la tenacidad y la flexibilidad son propiedades específicas de determinados plásticos y varían de unos a otros. Otras propiedades sin embargo, como las que se recogen en el cuadro de la derecha, son comunes a la mayoria de los plásticos.

propiedades físicas	características	
	maleabilidad	
mecánicas	ductilidad	
	resistencia mecánica	
acústicas	aislamiento acústico	
eléctricas	aislamiento eléctrico	
térmicas	aislamiento térmico	
	densidad: son ligeros	
otras	impermeabilidad	

-Propiedades ecológicas

Los plásticos son materiales reciclables. Se distinguen tres tipos de reciclado de los materiales plásticos, tal y como se muestra en el esquema:

- -Reciclado químico: consiste en la recuperación de los constituyentes originales de los residuos plásticos, a partir de los cuales se pueden obtener materiales nuevos mediante procesos químicos. Se llevan a cabo en la industria petroquímica. En el proceso, no siempre es necesario realizar una separación y clasificación previa de los materiales plásticos.
- Reciclado mecánico: Se utiliza para la fabricación de nuevos productos, a partir de materiales plásticos granulados. El proceso consta de los siguientes pasos:
- 1.- Separación y trituración: Se realiza una separación selectiva de los distintos tipos de plásticos. Posteriormente, se trituran para obtener plásticos fragmentados y molidos.
- 2.-Lavado y secado: Los plásticos se lavan y, para eliminar el agua , se secan por el centrifugado.
- 3.- Aglutinación: El material se compacta, por lo que se reduce volumen, y se añaden las cargas y los aditivos.
- 4.- Extrusión: Se funde el material. A la salida de la extrusora se obtienen largos filamentos continuos que son enfriados con agua.
- 5.- Granceado: Los filamentos obtenidos en el proceso anterior se trituran en un granulador y se transforman en granos plásticos. Se pueden mezclar diferentes tipos de granulado para producir un material compuesto por varios tipos de plásticos.

-Reciclado energético: Tiene lugar mediante la incineración de los productos plásticos. Se obtiene energía que es utilizada en procesos industriales o en la producción de calor y electricidad, en sustitución de los combustibles fósiles.

La mayoría de los plásticos son no biodegradables, pero gracia a la investigación en nuevas tecnologías se consiguen cada vez más plásticos biodegradables. Así, por ejemplo, existen plásticos que se descomponen por la acción de ciertas bacterias y agentes biológicos, es el caso de biopol, empleado en fabricación de botellas y molduras, el cual es degradado por los microorganismos del suelo. Otros son hidrosolubles, es decir, se disuelven en contacto con el agua fría o caliente y se utilizan como filmes y bolsas de plástico.

2.- Clasificación de los plásticos.

Según su estructura, pueden clasificarse en termoplásticos, termoestables y elastómeros.

2.1.- Plásticos termoplásticos

Cloruro de polivinilo (PVC)	Amplio rango de dureza, impermeable.	Tuberías, suelas de zapatos, guantes, trajes impermeables, mangueras
Poliestireno PS) Duro	Transparente. Pigmentable.	Filmes transparentes para embalajes, envoltorios de productos alimenticios.
Expandido (porexpán)	Esponjoso y blando.	Embalaje, envasado, aislamiento térmico y acústico.
Polietileno (PE) Alta Densidad (HDPE)	Rígido y resistente. Transparente.	Utensilios domésticos (cubos, recipientes, botellas) y juguetes.
Baja Densidad (LDPE)	Blando y ligero. Transparente.	Bolsas, sacos, vasos, platos
Polipropileno (PP)	Flexible, buena resistencia química y dureza superficial.	Botellas, envases, hilos en alfombras y sogas, embalajes, bolsas, sacos
Metacrilato (plexiglás)/ (PMMA)	Transparente.	Faros y pilotos de automóviles, ventanas,

		carteles luminosos, gafas de protección, relojes
Teflón (fluorocarbono)	Deslizante. Antiadherente.	Utensilios de cocina (sartenes, paletas, etc), superficies de encimeras
Celofán (Biodegradable)	Transparente (con o sin color). Flexible y resistente. Brillante y adherente.	Embalaje, envasado, empaquetado
Nailon (PA o poliamida)/ (Se degrada por acción de la luz)	Translúcido, brillante, de cualquier color. Resistente, flexible e impermeable.	Tejidos, cepillos de dientes, cuerdas de raquetas

2.2 Plásticos termoestables

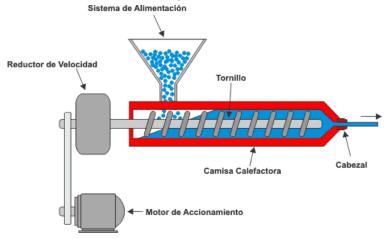
Vienen de derivados del petróleo. Están formados por cadenas unidas fuertemente en distintas direcciones. Cuando se les da calor y se moldean cogen una forma determinada que la conservan cuando se enfrían. Se diferencia de los otros porque este no se ablanda al volverlos a calentar.

Poliuretano (PUR)	Esponjoso y flexible. Blando y macizo. Elástico y adherente.	Espuma para colchonetas y asientos, esponjas, aislamiento térmicos y acústicos, juntas, correas para transmisión de movimiento, ruedas de fricción, pegamentos y barnices.
Resinas fenólicas (PH): baquelitas	Con fibras de vidrio, resistentes al choque. Color negro o muy oscuro. Aislante eléctrico. Con amianto, termorresistente.	Mangos y asas de utensilios de cocina, ruedas dentadas, carcasas de electrodomésticos, aspiradores, aparatos de teléfono, enchufes, interruptores, ceniceros
Melamina	Ligero. Resistente y de considerable dureza. Sin olor ni sabor. Aislante	Accesorios eléctricos, aislamiento térmico y acústico, encimeras de

	térmico.	cocina, vajillas, recipientes para alimentos.
Resinas de poliéster (UP)	Resistente a altas temperaturas (200°C). Se le añade fibra de vidrio, que le da fortaleza y rigidez.	Fabricación de cascos de protección para motos, estructuras de embarcaciones, carrocerías de coches, piscinas, cañas de pescar, techos

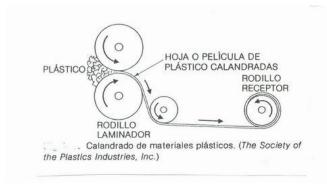
2.3 Elastómeros

Caucho natural	Látex	Resistente. Inerte.	Aislamiento térmico y électrico, colchones, neumáticos
Caucho sintético	Derivados del petróleo	Resistente a agentes químicos.	Neumáticos, volantes, parachoques, pavimentos, tuberías, mangueras, esponja de baño, guantes, colchones.
Neopreno	Caucho sintético	Mejora las propiedades del caucho sintético: es más duro y resistente. Impermeable.	Trajes de inmersión, juntas, mangueras, guantes


3.- Técnicas de conformación

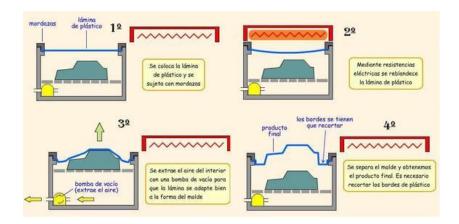
Los materiales plásticos, que se obtienen industrialmente, se presentan en diferentes formas: polvo, gránulos, resinas (líquidos viscosos)... Estos materiales se someten posteriormente a técnicas de conformación, que varían según las aplicaciones. Entre las más importantes destacan la extrusión, el calandrado, el conformado al vacío y el moldeo.

3.1.-Extrusión


- 1. El material termoplástico se introduce de forma de gránulos por el embudo o tolva de alimentación de la extrusora y cae en un cilindro previamente calentado.
- 2. El cilindro consta de un husillo o tornillo de grandes dimensiones que desplaza el material fundido, forzandolo a pasar por una boquilla o molde de salida.

- 3. El material, ya conformado, se enfría lentamente y se solidifica en un baño de refrigeración.
- 4. Por último, se recogen las piezas obtenidas mediante un sistema de arrastre.

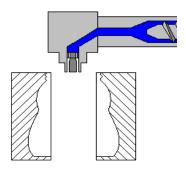
3.2.- Calandrado


Consiste en hacer pasar el material termoplástico, procedente del proceso de extrusión, entre unos cilindros o rodillos giratorios con el fin de obtener láminas y planchas continuas. Con el calandrado se pueden conseguir superficies con diferentes tipos de acabado (brillante, mate...), dependiendo del recubrimiento aplicado en el último rodillo.

3.3 Conformado al vacío

Esta técnica se utiliza , sobre todo, con láminas de plástico de gran superficie. Consta de los siguientes pasos:

- 1. El material termoplástico se sujeta a un molde.
- 2. La lámina se calienta con un radiador para ablandar el material.
- 3. A continuación, se succiona el aire que hay debajo de la lámina, haciendo el vacío, de modo que el material se adapte a las paredes del molde y tome la forma deseada.
- 4. Una vez enfriado, se abre el molde para extraer la pieza.

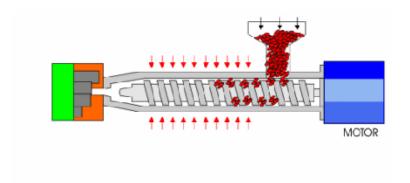

3.4 Moldeo

Las principales técnicas de fabricación de piezas mediante **moldes** que proporcionan la forma deseada son el moldeo por soplado, el moldeo por inyección y el moldeo por compresión.

-Moldeo por soplado

Los pasos de los que consta este proceso son los siguientes:

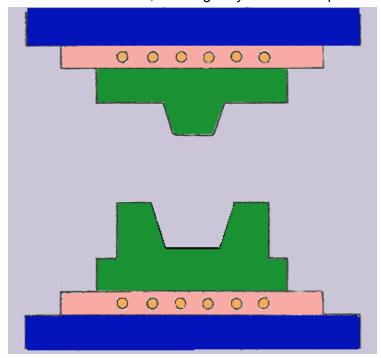
- El material en forma de tubo (obtenido en el proceso de extrusión) se introduce en un molde hueco cuya superficie interior corresponde a la forma del objeto que se quiere fabricar.
- 2. Una vez cerrado el molde, se inyecta aire comprimido en el tubo para que el material se adapte a las paredes del molde y tome su forma.
- 3. Tras enfriarse, se abre el molde y se extrae el objeto.



-Moldeo por inyección.

-Moldeo por soplado

Este proceso consiste en lo siguiente:


- 1. Se inyecta material termoplástico fundido en un molde.
- 2. Cuando el material se ha enfriado y solidificado, se abre el molde y se extrae la pieza.

-Moldeo por compresión

Este proceso se desarrolla en las siguientes fases:

- 1. Se introduce el material termoestable en forma de polvo o gránulos en un molde hembra.
- 2. Se comprime con un contramolde macho mientras un sistema de recalentamiento ablanda el material para hacerlo maleable.
- 3. El material adopta la forma de la cavidad interna de ambos moldes.
- 4. A continuación, se refrigera y se extrae la pieza del molde.

4.- Técnicas de manipulación.

Las técnicas de manipulación son aquellas en las que se usan herramientas y máquinas para modificar materiales prefabricados, tales como planchas, barras y perfiles. Entre estas operaciones destacamos el corte, el perforado y el desbastado o afinado.

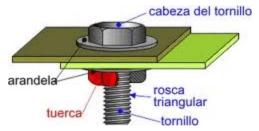
Corte:

- **Cúter**: se emplea para cortar planchas de diferentes grosores, según la dureza del material, que oscilan entre 3 mm y varios centímetros.
- **Tijeras:** se usan para cortar láminas blandas y flexibles cuyo grosor no supere 1 mm y también para realizar cortes rectos, oblicuos y curvilíneos.
- Punta de acero: sirve para cortar láminas de grosor no superior a 1 mm.
- Sierra de marquetería o segueta: se usa para cortar plásticos blandos y de espesor no superior a 1 mm.
- **Sierra de calar:** es una máquina que se emplea para cortar planchas de grandes dimensiones y plásticos rígidos.
- Prensa o troquel: se usa para cortar planchas de espesor no superior a 5 mm
- Hilo metálico caliente: se utiliza para cortar láminas blandas de material termoplástico.

Perforado:

- **Taladradora:** es una máquina que, mediante una broca que gira y avanza permite hacer agujeros en un material plástico.
- Lima y escofina: la lima presenta la cara estriada y se emplea para eliminar la parte sobrante de los materiales de elevada dureza.

5.UNIONES


Una vez manipulados , los materiales plásticos se pueden juntar mediante uniones desmontables o fijas.

5.1UNIONES DESMONTABLES

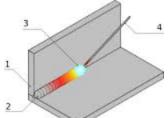
Permiten la unión y separación de las piezas mediante elementos roscados que impiden que se produzca la rotura del elemento de unión o el deterioro de las piezas.

ELEMENTOS ROSCADOS

Tornillo pasante con tuerca: atraviesa las piezas que se van a unir, y la tuerca se enrosca en la parte del tonillo que sobresa.

Tornillo de unión :se enrosca a las piezas que hay que unir , sobre las que se ha practicado previament e el agujero roscado.

Enroscado: las dos pieza roscados se unen entre si


5.2 UNIONES FIJAS

Se utiliza este sistema cuando no se prevé la separación de las piernas que se unen.

Adhesivos: resinas de dos componentes, cemento acrílico, adhesivos de contacto.

Soldaduro : es la unión de materiales termosplásticos por medio del calor y de la presión .

6 MATERIALES TEXTILES

6 MATERIALES TEXTILES

Los materiales textiles se utilizan en forma de hilos para elaborar tejidos .

6.1FIBRAS NATURALES

Fibras naturales de origen vegetal: algodón , lino ,esparto.

Fibras naturales de origen animal : lana ,seda

Flbras naturales de origen mineral :amiantro , metales

7. Materiales pétreos y cerámicos

7.1Materiales pétreos

Los materiales pétreos se obtienen de las rocas. Se encuentran an la naturaleza contituyendo grandes bloques y losas, como sucede con el mármol, el granito o la pizarra, que se extraen de las canteras. También se hallan en forma de gránulos y fragmentos de diversos tamaños, como es el caso de las arenas y las gravas o piedras pequeñas desgastadas por la erosión.

El mármol y el granito son dos rocas que se caracterizan por su elevada densidad , su tacto frío y dureza y su gran resistencia a las condiciones medioambientales y alos esfuerzos de compresión.Presentan dibujos y coloraciones naturales muy variadas y , una vez pulimentados , su superficie adquiere un brillo intenso. Se utilizan para el recubrimiento de suelos y paredes ,la fabricación de encimeras , en arquitectura y en escultura

La pizarra es un material duro , denso y compacto , lo que hace que sea impermeable .Se extrae en forma de lajas que , tras ser cortadas y prensadas, se utilizan principalmente para recubrir tejados y revestir pavimentos.

7.2Materiales pétreos aglomerantes

Yeso:Se obtiene aljez o piedra de yeso , que se tritura y se cueze hasta la deshidratacion para poder ser tratada. Es un material soluble y adherente ; resistente a la traccion , a la compresion y al fuego , y produce corrosión en el hierro y el acero.

Cemento:Se obtiene a partir de la mezcla triturada y cocida de caliza y arcilla . Una vez molida , a esta mezcla se le añade una pequeña cantidad de yeso.El resultado es un polvo de color grisáceo que , mezclado con agua , forma una pasta fácil de trabajar que fragua y adquiere una gran dureza y resistencia.

Montero: Es un material aglomedante formado por arena y cemento. Amasado con agua forma una pasta que se endurece.

Hormigón:Es una mezcla de grava , arena , agua y cemento que fragua y se endurece. Ofrece una gran resistencia a la compresión.Su densidad es variable.Se adhiere al acero , con lo que se obtiene el hormigón armado.Se emplea el acero para resistir básicamente los esfuerzos de tracción del conjunto , ya que el hormigón resiste bien la compresión , pero no la atracción.

7.3Materiales ceramicos

-Propiedades físicas y químicas:

La arcilla presenta plasticidad , por lo que pueden ser fácilmente moldeadas cuando se humedecen con agua , son blandas y porosas , resisten elevadas temperaturas y son químicamente inertes.Su colocación es muy variada , dependiendo de las impurezas que contengan.Son muy abundantes en la naturaleza y tienen gran verstilidad.

- -Proceso de obtención de los materiales cerámicos
- 1.Desbaste.Consiste en limpiar las arcillas para eliminar restos vegetales(raices, hojas...).Después se someten a un proceso de disgregación por medio de rodillos tritudares ,

ya que, por lo general, se encuentran apelmazadas formando terrones.

- 2.Amasado.Se lleva a cabo añadando agua , desengrasante , colorantes y fundentes a la masa de arcilla , para aumentr la plasticidad y disminuir el punto de fusión de esta.En el proceso de obtención de algunas cerámicas , la materia prima se funde y se produce la vitrificación , durante la cual la céramica adquiere ciertas propiedades del vidrio , lo que hace aumentar su resistencia
- 3. Secado. Se elimina el agua . En los procesos industriales se realiza en túneles equipados con calefacción y recirculación de aire.
- 4.Cocción.Se lleva a cabo en hornos , de llama directa o de muflas , a elevadas temperaturas que pueden oscilar entre 700° y 1700°C , según la materia prima empleada.
- 5.Barnizado.Una vez que se ha terminao de cocer el material, se puede dar color y barniz.

-Clasificación de los materiales cerámicos

-Ceramicas gruesas:

-Arcilla cocida:Se elavora con arcilla ordinaria de color rojizo , su tacto es duro y áspero , frágil . Puede aparecer recubierta o no de un esmalte blanco.

Se utiliza en ladrillos, tijeras, y otros elementos de construccion, objetos de alfarería etc...

-Loza:Se obtiene a partir de una mezcla de arcilla blanca con sílice y feldespato. Su tacto es fino y suave , elevada dureza y se cubre por una capa de barniz o de esmalte . Se emplea en la fabricación de vajillas , objetos decorativos , azulejos de baño...

-Refractarios:Están formados por arcilla cocida con óxidos de metales. Resistentes a temperaturas superiores 3000°C. Se utiliza en revestimiento interior de altos hornos , componentes eléctricos y electronicos...

-Ceramicas finas :

-Gres:Se compone de arcillas refractarias. Aspecto vidriado. Elevada dureza, gran compactibilidad, sonido metalico por percusión.Se emplea para bolsas, azulejos de especial dureza y resistencia, tubos, ladrillos...

-Porcelana:Se obtiene de una arcilla blanca muy seleccionada , denominada caolín .Transparente o translucida, compacta , elevada dureza.Con un grosor de 2 o 3 mm , se usa en vajillas , objetos decorativos , aislantes eléctricos , sanitarios , gres...

7.4.El vidrio

-Conformación: El vidrio se obtiene a partir de una mezcla de arena de cuarzo, sosa y cal , que se funde en un horno a temperaturas muy elevadas . El resultado es una pasta vítrea que se somete en caliente a diversas técnicas de conformación según la forma que se le quiera dar:

-Soplado automatico: El material vítrio entra en un molde hueco cuya superficie interior corresponde a la forma del objetivo deseado. Cuando se cierra el molde se inyecta aire comprimido en su interior para que el material se adapte a sus paredes. Cuando se enfria se abre el molde y se extrae el objeto

-Flotación sobre un baño de estaño: El material fundido se vierte en el deposito que contiene estaño líquido . Al ser menos denso , el vidrio se va distribuyendo sobre el estaño en una lampara, la cual es empujada por un sistema de rodillos hacia un horno de recocido ,

7.1Materiales pétreos

Los materiales pétreos se obtienen de las rocas. Se encuentran an la naturaleza contituyendo grandes bloques y losas, como sucede con el mármol, el granito o la pizarra, que se extraen de las canteras. También se hallan en forma de gránulos y fragmentos de diversos tamaños, como es el caso de las arenas y las gravas o piedras pequeñas desgastadas por la erosión.

El mármol y el granito son dos rocas que se caracterizan por su elevada densidad , su tacto frío y dureza y su gran resistencia a las condiciones medioambientales y alos esfuerzos de compresión.Presentan dibujos y coloraciones naturales muy variadas y , una vez pulimentados , su superficie adquiere un brillo intenso. Se utilizan para el recubrimiento de suelos y paredes ,la fabricación de encimeras , en arquitectura y en escultura

La pizarra es un material duro , denso y compacto , lo que hace que sea impermeable .Se extrae en forma de lajas que , tras ser cortadas y prensadas, se utilizan principalmente para recubrir tejados y revestir pavimentos.

7.2Materiales pétreos aglomerantes

Yeso:Se obtiene aljez o piedra de yeso , que se tritura y se cueze hasta la deshidratacion para poder ser tratada. Es un material soluble y adherente ; resistente a la traccion , a la compresion y al fuego , y produce corrosión en el hierro y el acero.

Cemento:Se obtiene a partir de la mezcla triturada y cocida de caliza y arcilla . Una vez molida , a esta mezcla se le añade una pequeña cantidad de yeso.El resultado es un polvo de color grisáceo que , mezclado con agua , forma una pasta fácil de trabajar que fragua y adquiere una gran dureza y resistencia.

Montero: Es un material aglomedante formado por arena y cemento. Amasado con agua forma una pasta que se endurece.

Hormigón:Es una mezcla de grava , arena , agua y cemento que fragua y se endurece. Ofrece una gran resistencia a la compresión.Su densidad es variable.Se adhiere al acero , con lo que se obtiene el hormigón armado.Se emplea el acero para resistir básicamente los esfuerzos de tracción del conjunto , ya que el hormigón resiste bien la compresión , pero no la atracción.

7.3Materiales ceramicos

-Propiedades físicas y químicas:

La arcilla presenta plasticidad , por lo que pueden ser fácilmente moldeadas cuando se humedecen con agua , son blandas y porosas , resisten elevadas temperaturas y son químicamente inertes.Su colocación es muy variada , dependiendo de las impurezas que contengan.Son muy abundantes en la naturaleza y tienen gran verstilidad.

- -Proceso de obtención de los materiales cerámicos
- 1.Desbaste.Consiste en limpiar las arcillas para eliminar restos vegetales(raices, hojas...).Después se someten a un proceso de disgregación por medio de rodillos tritudares ,

ya que, por lo general, se encuentran apelmazadas formando terrones.

- 2.Amasado.Se lleva a cabo añadando agua , desengrasante , colorantes y fundentes a la masa de arcilla , para aumentr la plasticidad y disminuir el punto de fusión de esta.En el proceso de obtención de algunas cerámicas , la materia prima se funde y se produce la vitrificación , durante la cual la céramica adquiere ciertas propiedades del vidrio , lo que hace aumentar su resistencia
- 3. Secado. Se elimina el agua . En los procesos industriales se realiza en túneles equipados con calefacción y recirculación de aire.
- 4.Cocción.Se lleva a cabo en hornos , de llama directa o de muflas , a elevadas temperaturas que pueden oscilar entre 700° y 1700°C , según la materia prima empleada.
- 5.Barnizado.Una vez que se ha terminao de cocer el material, se puede dar color y barniz.

-Clasificación de los materiales cerámicos

-Ceramicas gruesas:

-Arcilla cocida:Se elavora con arcilla ordinaria de color rojizo , su tacto es duro y áspero , frágil . Puede aparecer recubierta o no de un esmalte blanco.

Se utiliza en ladrillos, tijeras, y otros elementos de construccion, objetos de alfarería etc...

-Loza:Se obtiene a partir de una mezcla de arcilla blanca con sílice y feldespato. Su tacto es fino y suave , elevada dureza y se cubre por una capa de barniz o de esmalte . Se emplea en la fabricación de vajillas , objetos decorativos , azulejos de baño...

-Refractarios:Están formados por arcilla cocida con óxidos de metales. Resistentes a temperaturas superiores 3000°C. Se utiliza en revestimiento interior de altos hornos , componentes eléctricos y electronicos...

-Ceramicas finas :

-Gres:Se compone de arcillas refractarias. Aspecto vidriado. Elevada dureza, gran compactibilidad, sonido metalico por percusión.Se emplea para bolsas, azulejos de especial dureza y resistencia, tubos, ladrillos...

-Porcelana:Se obtiene de una arcilla blanca muy seleccionada, denominada caolín .Transparente o translucida, compacta, elevada dureza.Con un grosor de 2 o 3 mm, se usa en vajillas, objetos decorativos, aislantes eléctricos, sanitarios, gres...

7.4.El vidrio

-Conformación: El vidrio se obtiene a partir de una mezcla de arena de cuarzo, sosa y cal, que se funde en un horno a temperaturas muy elevadas. El resultado es una pasta vítrea que se somete en caliente a diversas técnicas de conformación según la forma que se le quiera dar:

-Soplado automatico: El material vítrio entra en un molde hueco cuya superficie interior corresponde a la forma del objetivo deseado. Cuando se cierra el molde se inyecta aire comprimido en su interior para que el material se adapte a sus paredes. Cuando se enfria se abre el molde y se extrae el objeto

-Flotación sobre un baño de estaño: El material fundido se vierte en el deposito que contiene estaño líquido . Al ser menos denso , el vidrio se va distribuyendo sobre el estaño en

una lampara, la cual es empujada por un sistema de rodillos hacia un horno de recocido , donde posteriormente se enfría .

7. Materiales pétreos y cerámicos

7.1 Materiales pétreos

Los materiales pétreos se obtienen de las rocas. Se encuentran an la naturaleza contituyendo grandes bloques y losas , como sucede con el mármol , el granito o la pizarra , que se extraen de las canteras. También se hallan en forma de gránulos y fragmentos de diversos tamaños , como es el caso de las arenas y las gravas o piedras pequeñas desgastadas por la erosión .

El mármol y el granito son dos rocas que se caracterizan por su elevada densidad, su tacto frío y dureza y su gran resistencia a las condiciones medioambientales y alos esfuerzos de compresión. Presentan dibujos y coloraciones naturales muy variadas y, una vez pulimentados, su superficie adquiere un brillo intenso. Se utilizan para el recubrimiento de suelos y paredes, la fabricación de encimeras, en arquitectura y en escultura

La pizarra es un material duro , denso y compacto , lo que hace que sea impermeable .Se extrae en forma de lajas que , tras ser cortadas y prensadas, se utilizan principalmente para recubrir tejados y revestir pavimentos.

7.2 Materiales pétreos aglomerantes

<u>Yeso:</u>Se obtiene aljez o piedra de yeso , que se tritura y se cueze hasta la deshidratacion para poder ser tratada. Es un material soluble

y adherente ; resistente a la traccion , a la compresion y al fuego , y produce corrosión en el hierro y el acero.

Cemento: Se obtiene a partir de la mezcla triturada y cocida de caliza y arcilla. Una vez molida, a esta mezcla se le añade una pequeña cantidad de yeso. El resultado es un polvo de color grisáceo que, mezclado con agua, forma una pasta fácil de trabajar que fragua y adquiere una gran dureza y resistencia.

Montero: Es un material aglomedante formado por arena y cemento. Amasado con agua forma una pasta que se endurece.

Hormigón: Es una mezcla de grava , arena , agua y cemento que fragua y se endurece. Ofrece una gran resistencia a la compresión. Su densidad es variable. Se adhiere al acero , con lo que se obtiene el hormigón armado. Se emplea el acero para resistir básicamente los esfuerzos de tracción del conjunto , ya que el hormigón resiste bien la compresión , pero no la atracción.

7.3 Materiales ceramicos

-Propiedades físicas y químicas:

La arcilla presenta plasticidad , por lo que pueden ser fácilmente moldeadas cuando se humedecen con agua , son blandas y porosas , resisten elevadas temperaturas y son químicamente inertes.Su colocación es muy variada , dependiendo de las impurezas que contengan.Son muy abundantes en la naturaleza y tienen gran verstilidad.

-Proceso de obtención de los materiales cerámicos

1.Desbaste.Consiste en limpiar las arcillas para eliminar restos vegetales(raices, hojas...).Después se someten a un proceso de disgregación por medio de rodillos tritudares , ya que , por lo general , se encuentran apelmazadas formando terrones.

- **2.Amasado.**Se lleva a cabo añadando agua , desengrasante , colorantes y fundentes a la masa de arcilla , para aumentr la plasticidad y disminuir el punto de fusión de esta.En el proceso de obtención de algunas cerámicas , la materia prima se funde y se produce la vitrificación , durante la cual la céramica adquiere ciertas propiedades del vidrio , lo que hace aumentar su resistencia
- **3.Secado.**Se elimina el agua . En los procesos industriales se realiza en túneles equipados con calefacción y recirculación de aire.
- **4.Cocción.**Se lleva a cabo en hornos , de llama directa o de muflas , a elevadas temperaturas que pueden oscilar entre 700° y 1700°C , según la materia prima empleada.
- **5.Barnizado.**Una vez que se ha terminao de cocer el material, se puede dar color y barniz.
- -Clasificación de los materiales cerámicos
- -Ceramicas gruesas:
- -Arcilla cocida: Se elavora con arcilla ordinaria de color rojizo, su tacto es duro y áspero, frágil. Puede aparecer recubierta o no de un esmalte blanco.
- Se utiliza en ladrillos , tijeras , y otros elementos de construccion, obietos de alfarería etc...
- **-Loza:**Se obtiene a partir de una mezcla de arcilla blanca con sílice y feldespato. Su tacto es fino y suave , elevada dureza y se cubre por una capa de barniz o de esmalte .
- Se emplea en la fabricación de vajillas , objetos decorativos , azulejos de baño...
- -Refractarios: Están formados por arcilla cocida con óxidos de metales. Resistentes a temperaturas superiores 3000°C. Se utiliza en revestimiento interior de altos hornos, componentes eléctricos y electronicos...

-Ceramicas finas:

- -Gres:Se compone de arcillas refractarias. Aspecto vidriado. Elevada dureza, gran compactibilidad, sonido metalico por percusión.Se emplea para bolsas, azulejos de especial dureza y resistencia, tubos, ladrillos...
- -Porcelana: Se obtiene de una arcilla blanca muy seleccionada , denominada caolín . Transparente o translucida, compacta , elevada dureza. Con un grosor de 2 o 3 mm , se usa en vajillas , objetos decorativos , aislantes eléctricos , sanitarios , gres...

7.4.El vidrio

- **-Conformación:** El vidrio se obtiene a partir de una mezcla de arena de cuarzo, sosa y cal, que se funde en un horno a temperaturas muy elevadas. El resultado es una pasta vítrea que se somete en caliente a diversas técnicas de conformación según la forma que se le quiera dar:
- -Soplado automatico: El material vítrio entra en un molde hueco cuya superficie interior corresponde a la forma del objetivo deseado. Cuando se cierra el molde se inyecta aire comprimido en su interior para que el material se adapte a sus paredes. Cuando se enfria se abre el molde y se extrae el objeto
- -<u>Flotación sobre un baño de estaño:</u> El material fundido se vierte en el deposito que contiene estaño líquido . Al ser menos denso , el vidrio se va distribuyendo sobre el estaño en una lampara, la cual es empujada por un sistema de rodillos hacia un horno de recocido , donde posteriormente se enfría .