
Assignment No.5

Aim:

Polling / voting system using Solidity, Ethereum and a data structure hashmap(optional)

Theory:

●​ Introduction to smart contract

●​ Introduction to Solidity programming language

Implementation:

●​ Write a Smart contract for voting system.

●​Connect and deploy smart contract using metamask.

●​Design and develop a front end to display the result of election.

●​Code:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.7.0 <0.9.0;
contract Ballot {

struct Voter {
uint weight;
bool voted;
address delegate;
uint vote;

}

struct Proposal {

bytes32 name;
uint voteCount;

}

address public chairperson;

mapping(address => Voter) public voters;
Proposal[] public proposals;

constructor(bytes32[] memory proposalNames) {

chairperson = msg.sender;
voters[chairperson].weight = 1;
for (uint i = 0; i < proposalNames.length; i++) {

proposals.push(Proposal({
name: proposalNames[i],
voteCount: 0

}));
}

}

function giveRightToVote(address voter) external {

require(
msg.sender == chairperson,
"Only chairperson can give right to vote."
);

require(
!voters[voter].voted,
"The voter already voted."

);
require(voters[voter].weight == 0);
voters[voter].weight = 1;

}
function delegate(address to) external {

Voter storage sender = voters[msg.sender];
require(sender.weight != 0, "You have no right to vote");
require(!sender.voted, "You already voted.");

require(to != msg.sender, "Self-delegation is disallowed.");

while (voters[to].delegate != address(0)) {

to = voters[to].delegate;

require(to != msg.sender, "Found loop in delegation.");

}
Voter storage delegate_ = voters[to];

require(delegate_.weight >= 1);

sender.voted = true;
sender.delegate = to;

if (delegate_.voted) {

proposals[delegate_.vote].voteCount += sender.weight;
} else {

delegate_.weight += sender.weight;
}

}
function vote(uint proposal) external {

Voter storage sender = voters[msg.sender];
require(sender.weight != 0, "Has no right to vote");
require(!sender.voted, "Already voted.");
sender.voted = true;
sender.vote = proposal;

proposals[proposal].voteCount += sender.weight;

}

function winningProposal() public view

returns (uint winningProposal_)
{

uint winningVoteCount = 0;
for (uint p = 0; p < proposals.length; p++) {

if (proposals[p].voteCount > winningVoteCount) {
winningVoteCount = proposals[p].voteCount;
winningProposal_ = p;

}
}

}
function winnerName() external view

returns (bytes32 winnerName_)

{
winnerName_ = proposals[winningProposal()].name;

}
}

Conclusion:

FAQs:​

1.​ What are dApps and its the benefits?

2.​ What is the purpose and uses of dApp ?

3.​ What are the features in dApps?

4.​ What are the most used dApps?

5.​ What are the Advantages and Disadvantages of dApps.

6.​ What is the difference between website and dApp?

Online References:

 https://blog.finxter.com/how-does-the-solidity-voting-smart-contract-work/

 https://docs.soliditylang.org/en/v0.8.16/solidity-by-example.html

https://blog.finxter.com/how-does-the-solidity-voting-smart-contract-work/

