
Websites & PDF Extractor Application

Websites & PDF Extractor Application

​
​
​

Team Members Contributions

Vedant Mane 33%

Abhinav Gangurde 33%

Yohan Markose 33%

Introduction

The project provides a centralized viewpoint on different varied sophisticated tools ranging from
Open source to paid enterprise solutions which would be generally utilized to scrape data for
data extractions from different PDF documents and websites.The project helps:

-​ Examine different results for the same requirement of data extraction,
-​ Understand the advantages and disadvantages of the tools used from a centralized

application point of view
-​ Access the extracted results in a configured storage of S3 buckets

Users can observe the data extraction results and capabilities of different tools to make an
informed decision on which tool to use based on personalized use case requirements.

Technologies Used

●​ Streamlit : Frontend Framework
●​ FastAPI : Backend API Framework
●​ Google Cloud Run : API Deployment
●​ AWS S3 : External Cloud Storage
●​ Scrapy : Website Data Extraction Open Source Tool
●​ PymuPDF : PDF Data Extraction Open Source Tool
●​ Diffbot : Website Data Extraction Enterprise Tool
●​ Microsoft Document Intelligence : PDF Data Extraction Enterprise Tool
●​ Docling : Document Data Extraction/Conversion Tool

Goal: A fully-fledged application that helps the user extract website and pdf data into a
structured markdown file and compare the different outputs by accessing the source and output
files stored appropriately in the cloud

Problem Statement

The major challenge lies in extracting meaningful information from unstructured sources of
PDFs and websites, majorly due to their varied inconsistencies for their data structures and data
layouts.​
​
While the PDF documents often save data in visual layouts or images rather than a specific
format they require specialized tools for parsing text, tables, and images from these documents.
Similarly for web url page scraping requires analyzing varied dynamic contents, images, tables
and complex HTML code analysis to extract the required data.

Solutions to extract data from these datasets range from open-source toolkits to paid enterprise
level options the user can test these tools and on the metrics of - accuracy, capabilities,
performance, ease of use and scalability and make an informed decision based on the
appropriate tool sets and their requirements.

Proof of Concept
With the problem dividing the requirement in two major sections of data scraping -

With the tools provided, users have access to a centralized application to test and validate the tools
and their individual capabilities to make an informed decision of each individual tools capabilities
and compare them against each other in-terms of their accuracy, capabilities, performance, ease of
use and scalability.

The Tools We used and Why

Beautiful Soup (Open Source web scraping) : An open source python library that makes it easy to
extract data from websites by parsing the HTML or XML document even if it is poorly formatted. A
variety of inbuilt functionalities such as extracting specific elements, navigating through the
document helps us give granular as well as a general control over what is being scraped and how it
scrapes the data. All this and the simplicity in its usage factored into our decision to select this tool
for open source web scraping

Diffbot (Enterprise web scraping) : A web scraping tool capable of categorizing websites to classify
a type to the website and extract more specific details from them. Their claim is that websites'
content are interpreted by a machine learning model trained to identify the key attributes on a page
based on its type. And further specific APIs have been developed for these different types.

As requirement doesn’t specifically mention the type of urls diffbots categorization provides a good
scalability space to further update the data extraction to a more specific level using its
classifications.

For testing out the diffbot Extract APIs documentation has been provided for samples utilizing
different classifiers to test and showcase their functionalities and data extraction.

PyMuPDF (Open Source pdf extraction) : An open source tool that gives us very granular control
over the pdf we want to extract. It enables page py page rendering letting the user decide how to
extract data from each page. Additionally, the speed of rendering and extracting images and
contents is much higher compared to other open source tools available and also one of the major
reasons in selecting this tool.

Microsoft Document Intelligence (Enterprise Tool) : A cloud based Azure AI service provides users
with an enterprise level solution for analysis documents, with varied layouts and data structures.

Using their pre- trained models like read and layout enables users to capture data text, layout
information for the document.

Docling (Open Source) : An open-source toolkit that is able to transform complex documents like
pdf and Doc files, as well as parse diverse formats like HTML. The one main benefit is that it can be
implemented in the data extracting and processing pipelines to extract and convert data into a
standard format like a markdown file. The tools ability to convert even complex pdf and HTML data
even for pdf with diverse formats led us to select this tool for the purpose of conversion to
markdown files.

Basic Tests

●​ Selecting the open source web scraping tool: Examined various open source tools
including “newspaper”, “scrapy”, and “beautiful soup”. Tested the features, scalability,
ease of use and finalised beautiful soup for web scraping

●​ Selecting the enterprise web scraping tool: Examined various enterprise tools
including “Microsoft Document Intelligence”, “”, and “Diffbot”. Tested the features,
scalability, ease of use and finalised Diffbot for web scraping

●​ Selecting the open source pdf extraction tool: Examined various open source tools
including “pypdf”, “pdfplumber”, “tabula”, and “Pymypdf”. Tested the features, scalability,
ease of use and finalised Pymypdf for pdf scraping for its speed and granular control

●​ Selecting the enterprise pdf extraction tool: Evaluate the capabilities of Amazon
Textract and Azure Intelligent Document. Tested API features, usability, and capabilities
showed that Azure Intelligent Document provided better extraction options and
scalability.

●​ Comparing Docling and Markitdown: Tested the various features and practicality of
the tools and understood what works and what does not

●​ Setting up AWS S3 Buckets and testing boto3: Created amazon S3 buckets and
tested the manipulation of the buckets through code using boto3

●​ Creating the flow between S3, FastAPI (Backend) and Streamlit (Frontend):
Established a flow between the three components and made sure the code intractability
between them is working

Challenges

●​ Following tables is consolidated challenges faced for each tools set:

Tools Category Challenges

Beautiful Soup Open-source Web Scraping Limited scalability for large-scale scraping
due to lack of built-in crawling or concurrency
mechanisms
Difficulty in handling dynamic contents such
as animated web images

Diffbot Enterprise Web Scraping Limitation due to free-tiers access and

Addressed Challenges

●​ Open-source Web Scraping: Used the HTML structure to maintain order and extracted
only the essential contents

●​ Open-source PDF Extraction: Used Pymupdf for block by block extraction of text, links
and images

●​ For Enterprise PDF Extraction Tools : Amazon Textract uses synchronous AnalyzeDocument
or DetectDocumentText are limited to processing one page at a time they can be used and
processed parallel using asynchronous by adding the documents onto buckets but it
adds additional layer of accessibility and implementation issue as compared to Azure AI
Document API enables us to use models and scan pages individually.

●​ For Diffbot :

They provide a standard Analyze API, which categorizes the page into an appropriate
type. The classification are article, image, video, discussion, event, or list - using these
specific classes further detailed datasets can be configured to extract. They also offer a
custom API where users can create entirely new custom extractions by defining rules, all
provided in their documentation : https://docs.diffbot.com/reference/extract-introduction

limited control over customization of
scraping logic compared to open-source
alternatives

PyMuPDF Open-source PDF Extraction Although a table extraction feature is
available it does not reliably identify tables
in a pdf and considered them as lines of
text

Azure Document
Intelligence

Enterprise PDF Extraction - Handling complex table structures and
nested layouts in PDFs
- Limitations due to free-tier (Number of
documents and pages scanned limit to 2)
- Rigid response structure and PDF structures
- Only extracts images metadata for the
document

Docling Open-source Web Scraping​
Open-source PDF Extraction

- When converting large or complex PDFs to
Markdown can take significant time.
- Image extraction does not work for
Websites, need to use open source toolkit for
the same purpose. Docking is able to identify
the images but returns a None type object.
-

https://docs.diffbot.com/reference/extract-introduction

They also provide bulk extraction using Extract API which can be scheduled or
automated. Each url that needs to be scraped needs to be provided in a job. Thus, if the
use case requirement specifies scraping data from thousands of websites rather than
creating a thousand API calls for varied HTML structures a bulk job can be configured to
collect data.

Product Type\Plan Free Startup Plus

All APIs 5 Calls Per Minute 5 Calls Per Second 25 Calls Per
Second

Extract API 10,000 Calls Per
Month

None None

Crawl / Bulk
Extract API

n/a n/a 25 Active Jobs,
1000 Total Jobs

Pricing analysis :

The free tier account for a new user is provided with 10,000 credits per month at no cost.
A small scale requirement can easily be handled by the same.

Additionally previewing the provided costing plans gives more leverage for bulk
extraction which is accessible in the paid plans only with increased credits and rate
limits.

Thus for reference if we wanna take 10000 webpages (1 credit per webpage) which is
also the limit for a free account one would :

●​ For a free account -

10000 webpages / 5 calls per min = 2000 minutes which is around 33.33 hours at 0$

●​ For a Startup Plan -

10000 webpages / (5 * 60) calls per min = 33.33 minutes costing around $299

Additional with no limitations on further calls but the same also doesn't include bulk
extraction feature.

●​ For a Plus Plan -

10000 webpages / (25 * 60) calls per min = 6.67 mins at $899 costing plan,

With no limitations on further calls and bulk bulk extraction feature jobs to configure
larger jobs.

https://docs.diffbot.com/reference/extract-introduction

For Azure Intelligent Document : We provide the option of 2 pre-handled models -
read and layout to handle text extraction along with the potential images, table and
layout information if the document has the same or needs to be collected.​
Additional to the Document Intelligent azure service we also explored on Azure AI Vision
for image-to-text capabilities by converting PDF to images, observed results are similar
to that of read or layout models from Intelligent Document.

Limitation for Azure AI :

1.​ The documentation service for the pre-trained models expects a specific
structure/layout for the document.

2.​ Free-tier accounts are limited with the number of pages that can be scanned for
data as well as the number of pages in a single document are limited to only 2.

3.​ Supported file size: the file size must be less than 50 MB and dimensions at least
50 x 50 pixels and at most 10,000 x 10,000 pixels

4.​ The AI Documentation provides the option in the “prebuild-layout” model to
extract the images from the in cropped png but the render images are almost
indecipherable - thus we are only collecting the metadata from documents
containing images. ​
​
https://azuresdkdocs.z19.web.core.windows.net/python/azure-ai-documentintellig
ence/latest/index.html#extract-figures-from-documents

https://learn.microsoft.com/en-us/answers/questions/2116806/can-i-extract-image
s-form-documents-using-azure-ai

https://azuresdkdocs.z19.web.core.windows.net/python/azure-ai-documentintelligence/latest/index.html#extract-figures-from-documents
https://azuresdkdocs.z19.web.core.windows.net/python/azure-ai-documentintelligence/latest/index.html#extract-figures-from-documents
https://learn.microsoft.com/en-us/answers/questions/2116806/can-i-extract-images-form-documents-using-azure-ai
https://learn.microsoft.com/en-us/answers/questions/2116806/can-i-extract-images-form-documents-using-azure-ai

Architecture Diagram

Walkthrough of the Application

Landing Page for the application - Provides an entry point for the user to access the
tools and services offered with the option to select a PDF document or scrape through a
webpage url.

Option 1 : WebURL - Selecting the option of web urls user can parse through web scraping
tools like : BeautifulSoup (Open Source), Diffbot (Enterprise Tool) and Docling (Open Source)

And the user needs to paste a web url that he wants to scrape data from and click on the
“Convert” Button.
eg : https://en.wikipedia.org/wiki/Cat

https://en.wikipedia.org/wiki/Cat

Option 2 : PDF - Other option from the drop down provides the user to select a PDF file to
upload for data parsing with the tool options of - PyMuPDF (Open Source), Azure Intelligent
Document (Enterprise Tool) and Docling (Open Source).

User needs to upload a pdf format file using the “Browse file” option and click on the “Convert”
button.

After Data Scraping : Post the conversion process is successful for the selected tool the user
can access the converted markdown .md file via the provided link. ​
Additionally the same file can be accessed in the configured S3 buckets storage space with the
file identifiable using the directory path.

​
Users can select and try all the options and compare the results to make an educated decision
on the tools capabilities and use case requirements for the tools.

Application Workflow (Data Engineering
Work + Code Explanation)

Frontend - Streamlit

●​ The user inputs the source from which he wants to extract the data. The
selection (Url/pdf) is stored in the secession state of streamlit, which will
have a string or fileupload option accordingly

●​ This session state is then used to send the respective source, along with the
tool being used (Chosen by the user) and send it for extraction by calling the
respective function

●​ Separate functions have been created for pdf and web conversion each of
which will use the required api calls (with respective endpoints) depending on
the chosen tool

Backend FastAPI

,
●​ The API (Backend) contains specific end points for each type of data extraction that

needs to be done.
●​ Depending on the the user selection, the appropriate endpoint is called and the

extraction logic for that particular endpoint is performed
●​ Each time a user needs an extraction, the source for the same is being uploaded to the

s3 bucket in their respective folders for future reference
●​ Each endpoint logic contains the respective process functions thats being called to

process the source given by the user, process it and uploaded the final markdown file to
S3 along with its source.

●​ The extracted data is now being send back to streamlit to display it in markdown format
for the user

Storage S3 Buckets

●​ The output markdown files, images and source files are all being stored on s3 once the
documents are processes

●​ The functions defined in our s3 class has multiple features for bucket manipulation using
boto3 including upload feature, which takes in the bucket name, the base path and
actual content as argument an uploads them into the required path

Features (Extraction Functions)

Open Source Url Extraction

●​The function takes in a url (source provided by the user) and parses the html
content using Beautiful Soup, html parser.

●​ Since the html content is structured, we loop through the structure and append
the necessary element contents in a a list (md_content) formatting it accordingly

●​ While looping through the structure, we have cleaned some data in the text as
well as handled relative urls for proper embedding to markdown

●​ This then joins the all the elements in the appended list and return one full string
that is in markdown format

Open Source PDF Extraction

●​ Pymupdf can read and process a pdf page by page converting it to blocks
that contain dictionaries with text, image, link and table elements

●​ Making use of this feature,we loop through the blocks for each page

●​ The main challenge was to extract contents from the pdf in an ordered
manner. It would have been easy to extract all the text once and then the
images but making use of the blocks we were able to extract each content
in the appropriate order

●​ For each type of elements the functions processes it and appends it in the
respective format into the md_content list

●​ Once all pages have been process, the list is joined together to form one
string in the markdown format

Enterprise Url Extraction (Diffbot)​

●​ To utilize the diffbot API services diffbot provides and consolidates reference
samples in the link. Using the same base we configure the client and the API
response connection.

●​ The Extract API service for the client using the provided function extracting the
data from a generalized standpoint API providing the function

●​ The response provided contains a defined structured response from the same we
have configured to extract only the 'title', 'text', 'images', 'pageUrl', 'type' objects
and render the same content onto a .md file to save and display as the response.

●​ Additionally both the generated .md and provided links are being saved onto a
S3 buckets.

https://github.com/diffbot/diffbot-python-client

Enterprise PDF Extraction (Azure Intelligent Documentation)

●​ The Azure Intelligent Documentation services in the application have been
configured for 2 pre-trained models which users can select from the application.

●​ With the limitations mentioned, images or complex data structures like tables are
not captured by the read model - primarily configured for data text extraction from
documents. Layout model along with the data extraction is able to capture
identified images we in our application are collecting only metadata for their
location polygons.

●​ The Response provided from the APIs is captured and manually render into a
structured format to display the results from the document scans.

●​ Additionally the results in generated .md and original pdf is stored in S3 and an
accessible link is provided.

​

Docling APIs:

URL API:

●​ The API fetches the HTML content from the URL, encodes it, and converts it into
a byte stream

●​ It uploads the HTML URL link to pre-defined path in the S3 bucket
●​ Then the HTML byte stream is passed to a converter function for further

processing
●​ Returns a success message with the S3 URL and processed content

URL PDF:

●​ The API decodes the file content and converts it into a byte stream
●​ It uploads the PDF content to pre-defined path in the S3 bucket
●​ Then the PDF byte stream is passed to a converter function for further

processing
●​ Returns a success message with the S3 URL and processed content

Docling URL Extraction

●​ Set up options for processing the Website, including OCR, table structure
extraction, image scaling, and generating page/picture images.

●​ Writes the HTML byte stream to a temporary file for processing and ensures it is
ready for conversion.

●​ Converts the temporary HTML file into Markdown format using docling.
●​ Use BeautifulSoup to extract and replace images in the markdown as docling is

unable to extract Image data from the HTML file
●​ Upload the converted Markdown file to an S3 bucket and returns the file name

along with its extracted content

Docling PDF Extraction

●​ Set up options for processing the PDF, including OCR, table structure extraction,
image scaling, and generating page/picture images.

●​ Writes the PDF byte stream to a temporary file for processing and ensures it is
ready for conversion.

●​ Converts the temporary PDF file into Markdown format using docling.
●​ Upload the converted Markdown file to an S3 bucket and returns the file name

along with its extracted content.

Directory Structure

References
Streamlit documentation

FastAPI Documentation

Scrapy Documentation

PyMuPDF Documentation

Diffbot Documentation

Microsoft Document Intelligence Documentation

Docling Documentation

https://docs.streamlit.io/
https://fastapi.tiangolo.com/
https://docs.scrapy.org/en/latest/
https://pymupdf.readthedocs.io/en/latest/
https://docs.diffbot.com/reference/introduction-to-diffbot-apis
https://learn.microsoft.com/en-us/azure/ai-services/document-intelligence/?view=doc-intel-4.0.0
https://ds4sd.github.io/docling/

Disclosures
​
WE ATTEST THAT WE HAVEN’T USED ANY OTHER STUDENTS’ WORK IN OUR
ASSIGNMENT AND ABIDE BY THE POLICIES LISTED IN THE STUDENT
HANDBOOK

We acknowledge that all team members contributed equally and worked to present the
final project provided in this submission. All participants played a role in crucial ways,
and the results reflect our collective efforts.

Additionally we acknowledge we have leveraged use of AI along with the provided
references for code updation, generating suggestions and debugging errors for the
varied issues we faced through the development process.AI tools like we utilized:

●​ ChatGPT
●​ Preplexity
●​ Github Copilot
●​ Claud

Team Members Contributions

Vedant Mane 33%

Abhinav Gangurde 33%

Yohan Markose 33%

	Websites & PDF Extractor Application
	Websites & PDF Extractor Application
	
	
	
	
	
	
	
	​​​

	Introduction
	Technologies Used

	
	Problem Statement
	Proof of Concept
	Architecture Diagram
	
	Walkthrough of the Application
	
	Application Workflow (Data Engineering Work + Code Explanation)
	●​The function takes in a url (source provided by the user) and parses the html content using Beautiful Soup, html parser.
	Directory Structure
	References
	

	Disclosures

