
SRCU Grace-Period Ordering
Paul E. McKenney
December 23, 2022

Introduction
This is a brain dump of my understanding of the implementation of SRCU’s memory-ordering
properties. The implementation’s ordering is intended to be redundant, this redundancy being a
counterpart of mechanical engineering’s safety factors. This means that someone perusing the
source code might well come up with different sets of accesses guaranteeing the needed
ordering.

This document is not part of the official documentation of the Linux-kernel RCU implementation,
which is being constructed by Joel Fernandes, Frédéric Weisbecker, and Boqun Feng.

Requirements
Quoting the synchronize_srcu() header comment:

* There are memory-ordering constraints implied by synchronize_srcu().
* On systems with more than one CPU, when synchronize_srcu() returns,
* each CPU is guaranteed to have executed a full memory barrier since
* the end of its last corresponding SRCU read-side critical section
* whose beginning preceded the call to synchronize_srcu(). In addition,
* each CPU having an SRCU read-side critical section that extends beyond
* the return from synchronize_srcu() is guaranteed to have executed a
* full memory barrier after the beginning of synchronize_srcu() and before
* the beginning of that SRCU read-side critical section. Note that these
* guarantees include CPUs that are offline, idle, or executing in user mode,
* as well as CPUs that are executing in the kernel.
*
* Furthermore, if CPU A invoked synchronize_srcu(), which returned
* to its caller on CPU B, then both CPU A and CPU B are guaranteed
* to have executed a full memory barrier during the execution of
* synchronize_srcu(). This guarantee applies even if CPU A and CPU B
* are the same CPU, but again only if the system has more than one CPU.
*
* Of course, these memory-ordering guarantees apply only when
* synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
* passed the same srcu_struct structure.

To make things easier, let’s number and name the different components of this guarantee:



1. The component “when synchronize_srcu() returns,each CPU is guaranteed
to have executed a full memory barrier since the end of its
last corresponding SRCU read-side critical section whose
beginning preceded the call to synchronize_srcu()” is called “Since
End of Last Critical Section”.

2. The component “each CPU having an SRCU read-side critical section
that extends beyond the return from synchronize_srcu() is
guaranteed to have executed a full memory barrier after the
beginning of synchronize_srcu() and before the beginning of
that SRCU read-side critical section” is called “Before Beginning of Next
Critical Section”.

3. The component “if CPU A invoked synchronize_srcu(), which returned
to its caller on CPU B, then both CPU A and CPU B are
guaranteed to have executed a full memory barrier during the
execution of synchronize_srcu()” is called “During Execution of
synchronize_rcu()”.

Note also that the wording of this comment is sloppy, as in notes to myself rather than a
complete mathematical description. In particular, synchronize_srcu() is often (but not
always!) used as a shorthand for “the SRCU grace period corresponding to a given
synchronize_srcu()“. Also, most of the colloquialisms “before”, “after”, and friends should be
understood to entail memory ordering. To avoid excessive repetition, there will be a
“Grace-Period Ordering” component factored out of the above three components.

There will also be a bonus “Forward Progress Considerations” section.

Implementation
Each component is described in the corresponding section below.

Since End of Last Critical Section
On the surface, this one is easy. After all, srcu_read_unlock() executes a full memory
barrier, so job done, right?

Not quite, given that there are those sneaky colloquialisms “since” and “preceding” hiding in that
phrase. This means that the grace-period ordering must have some way of classifying SRCU
read-side critical sections that begin before a given grace period and that end after that grace
period. Furthermore, the grace-period processing code must provide ordering as well.

In addition, there can be SRCU read-side critical sections that neither begin before a given
grace period nor that end after that grace period. These must also be correctly ordered.



Before Beginning of Next Critical Section
The letter of this law is satisfied by the smp_mb() executed by srcu_read_unlock(). But
again, there is that “beyond the return from synchronize_rcu()” and “before the beginning
of that SRCU read-side critical section. This attain requires that grace-period ordering have
some way of classifying SRCU read-side critical sections that begin before a given grace period
and that end after that grace period.

During Execution of synchronize_rcu()
First, the scheduler provides a full memory barrier on each CPU involved in a given task
migration. This is not sufficient in and of itself, but it does guarantee that the effects of each
smp_mb() in the task executing that synchronize_srcu() will still take effect across any
task switch.

Let’s focus on the end first, because the end is trivially supplied by the smp_mb() right at the
end of __synchronize_srcu(). Note that both synchronize_srcu() and
synchronize_srcu_expedited() invoke __synchronize_srcu().

The full barrier at the beginning of synchronize_srcu() can be found by looking at the
__synchronize_srcu() function’s call to __call_srcu(), which in turn calls
srcu_gp_start_if_needed(), which calls __srcu_read_lock_nmisafe(), which
invokes the required smp_mb().

Grace-Period Ordering
To break up the tedium, this is split into the following sections:

1. Beginning of grace period against grace-period requests.
2. End of grace period against pre-existing critical sections.
3. Grace period beginning and end.
4. Beginning of grace period against surviving critical sections.
5. End of grace period against reclamation.

Beginning of Grace Period Against Grace-Period Requests
The previous section established that synchronize_srcu() and friends eventually invoke
__srcu_read_lock_nmisafe(), which contains the smp_mb() that orders everything
following against the pre-grace-period change.

They also invoke srcu_gp_start_if_needed(), which in turn invokes rcu_seq_snap()
on the srcu_struct structure’s ->srcu_gp_seq field, all the while holding the srcu_data
structure’s ->lock, the acquisition of which also implies a full memory barrier.



The srcu_gp_start_if_needed() function might need to start a new SRCU grace period,
in which case it invokes either srcu_funnel_gp_start() or
srcu_funnel_exp_start().

But either way, an SRCU grace period will be started, which will invoke srcu_gp_start(),
which will in turn invoke rcu_seq_start() on the srcu_struct structure’s
->srcu_gp_seq field. The memory barriers combined with the accesses to this field
guarantee that the start of the grace period follows the request for that grace period, be that
request call_srcu(), synchronize_srcu(), or synchronize_srcu_expedited().

Why?

Because the grace-period request did an ordered access to the srcu_struct structure’s
->srcu_gp_seq field before the beginning of that grace period did an ordered increment of
that same field. Therefore, the entire grace period is ordered after any memory reference
preceding any request for that same grace period. QED.

End of Grace Period Against Pre-Existing Critical Sections
Note that while it is just fine to misclassify a limited number of critical sections as being
pre-existing, misclassification in the other direction is fatal. To that end, while the beginning of
the SRCU grace period is the call to rcu_seq_start(), pre-existing SRCU read-side critical
sections are recognized all the way down to the ->srcu_lock_count[] and
->srcu_unlock_count[] scans.

These scans must be ordered with respect to the formal beginning of the grace period and the
read-side primitives. @@@

Grace Period Beginning and End
This one is easy. The grace period began with a call to rcu_seq_snap() and ended with a
call to rcu_seq_end(), both of which do an ordered increment of the srcu_struct
structure’s ->srcu_gp_seq field. This provides full ordering. However, this ordering must be
transmitted on to the post-grace-period code, which depends on the primitive used to request
the grace period, which is the topic of the later section “End of grace period against
reclamation”.

Beginning of Grace Period Against Surviving Critical Sections
Note that while it is just fine to misclassify a limited number of critical sections as being
pre-existing, misclassification in the other direction is fatal. @@@



End of Grace Period Against Reclamation
Let’s start with call_srcu(), which requires that the invocation of the callback be ordered
against the end of the grace period.

Ordering stores in readers with loads around synchronize_rcu()
WIP

Forward Progress Considerations

Mind mapping of ordering
https://pasteboard.co/izjxIls6rMCc.jpg

Read-Side Optimizations?
Both srcu_read_lock() and srcu_read_unlock() invoke smp_mb(), which is not the
fastest memory-ordering operation in the world. It is hard to imagine being able to safely
weaken srcu_read_lock() because the counter write must be seen as preceding all
accesses in the ensuing read-side critical section. In contrast, downgrading the
srcu_read_unlock() function’s full memory barrier to release semantics is not out of the
question, many devils though there might be in the details.

Let’s look at the known constraints:

● If the grace-period processing sees the srcu_read_unlock() function’s unlock
increment, then it must also see the lock increment from the corresponding
srcu_read_lock(). The ordering for this message-passing (MP) pattern is provided
by a release operation combined with the smp_mb() between the grace-period’s unlock
and lock summations.

● If the grace-period processing sees the srcu_read_unlock() function’s unlock
increment, then all code following the end of the current grace period must see the effect
of all accesses within the corresponding SRCU read-side critical section. This is
discussed in the following section.

Critical Section vs. Post-Grace-Period Accesses
Consider the following summary scenario:

// Read-side critical section:

https://pasteboard.co/izjxIls6rMCc.jpg


idx = srcu_read_lock(&srcu); // smp_mb()
r1 = READ_ONCE(x);
WRITE_ONCE(y, 1);
WRITE_ONCE(z, 1);
srcu_read_unlock(&srcu, idx); // Release ordering

// Post-grace-period accesses:
WRITE_ONCE(x, 1);
r2 = READ_ONCE(y);
WRITE_ONCE(z, 2);

// Order detection code x:
WRITE_ONCE(x, 2);
smp_mb();
r3 = READ_ONCE(y);

// Order detection code y:
WRITE_ONCE(y, 2);
smp_mb();
r4 = READ_ONCE(z);

If a given grace period sees the reader’s srcu_read_lock(), then it cannot end until it also
sees that reader’s srcu_read_unlock(). The read of the unlock counter is followed by
smp_mb() A, which orders against subsequent access in the grace-period processing code.
This subsequent code includes the calls to srcu_schedule_cbs_snp(), which use
workqueues to schedule callback invocation. There are accesses to work-queue data structures
at both ends of the workqueue handoff, and the spin_lock_irq_rcu_node(sdp) within
srcu_invoke_callbacks() implies a full smp_mb() barrier, which forces the callback
execution to be fully ordered against the prior grace period.

In the case of synchronize_srcu(), he smp_mb() at the end of
__synchronize_srcu() orders the wakeup accesses against those following the return from
synchronize_srcu().

Mapping these out for the case where the post-grace-period accesses are in an SRCU callback:

● Read-side critical section: Critical-section accesses -> release -> unlock counter update.
● Grace-period counter access: Unlock counter read -> smp_mb() -> workqueue update.
● Workqueue handler invocation: Workqueue read ->

spin_lock_irq_rcu_node(sdp) use of smp_mb() -> callback invocation and
hence post-grace-period accesses.

This is a release-acquire chain that connects the critical-section accesses to the
post-grace-period accesses, which suffices to provide the required ordering.



Mapping these out for the case where the post-grace-period accesses follow a return from
synchronize_srcu():

● Read-side critical section: Critical-section accesses -> release -> unlock counter update.
● Grace-period counter access: Unlock counter read -> smp_mb() -> workqueue update.
● Workqueue handler invocation: Workqueue read ->

spin_lock_irq_rcu_node(sdp) use of smp_mb() -> callback invocation’s
completion-queue runqueue updates.

● Wakeup: Runqueue reads -> –synchronize_srcu() use of smp_mb() ->
post-grace-period accesses.

This is again a release-acquire chain that connects the critical-section accesses to the
post-grace-period accesses, which again suffices to provide the required ordering.

However, this is not sufficient because the ordering must be visible to unrelated CPUs, which is
the point of the x and y order-detection code. Here is where the LKMM Rule of Thumb #4
comes into play: “At least one full barrier is required between each pair of non-store-to-load
links” (see “Is Parallel Programming Hard, And, If So, What Can You Do About It?”, Section
15.6). In all cases, this rule of thumb is followed, so the required ordering is provided even to
unrelated CPUs.

Therefore, it should be safe to downgrade srcu_read_unlock() ordering from smp_mb() to
some sort of release operation, be it an smp_mb_acq_rel() or a this_cpu_inc_release()
or whatever.

Documentation
Note well that the synchronize_srcu() header comment states this guarantee:

On systems with more than one CPU, when synchronize_srcu()
returns, each CPU is guaranteed to have executed a full memory
barrier since the end of its last corresponding SRCU read-side
critical section whose beginning preceded the call to
synchronize_srcu().

If the srcu_read_unlock() function’s ordering is downgraded from a full memory barrier to
release ordering, then at the very least this comment must change. Preferably there should
also be some investigation to see if any code is relying on this guarantee. After all, this
guarantee was added to synchronize_rcu() because people asked for it. They just might
also need it on synchronize_srcu().

https://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.2022.09.25a.pdf


What if someone does need this guarantee? One approach is to provide a special
srcu_read_unlock_full() or some such for them.

Using LKMM litmus tests to build a model of SRCU
implementation with GP guarantee verification?
The following 2 litmus tests attempt to build a model of SRCU. We consider scanning done on
only 2 CPUs to keep state-space explosion low. To model per-cpu arrays, we use 4 variables (2
CPUs each with 2 IDX values).

Case1: Stores in updater, loads in readers
Litmus test link: https://gist.github.com/joelagnel/3b6537e06a953ff64b205e1019e5afdf
Runs successfully in 20 minutes.

Experiment 1: Delete D/E barriers
Passes, we can clearly see that D/E memory barriers pre and post-flip are not needed for
correctness.

Experiment 2: Delete A, keep D/E: Fails.

Experiment 3: Relax the unlock memory barrier (C) in srcu_read_unlock() to
smp_store_release()
Passes, Doing this shows that the test still passes.

Experiment 4: Remove “C” completely.
WIP (I will abandon this since I lost the result, and Case 2 fails anyway).

Case2: Stores in readers, loads in updater
Litmus test link: https://gist.github.com/joelagnel/b96706a7fdf70917e54ab7a5e94fe4b7
Runs successfully in 20 seconds.

Experiment 1: Delete D/E barriers
Passes, we can clearly see that D/E memory barriers pre and post-flip are not needed for
correctness.

Experiment 2: Remove A, keep D/E : Fails.

Experiment 3: Relax the unlock memory barrier (C) in srcu_read_unlock() to
smp_store_release().
Doing this shows that the test still passes.

https://gist.github.com/joelagnel/3b6537e06a953ff64b205e1019e5afdf
https://gist.github.com/joelagnel/b96706a7fdf70917e54ab7a5e94fe4b7


Experiment 4: Remove “C” completely. : Fails.

Case3: Stores in reader, loads in updater and in post-GP readers
WIP

But is This Worthwhile?
Across Meta’s fleet, __srcu_read_unlock() consumes a vanishingly small fraction of the
CPU time, as in some orders of magnitude less 0.1%. This is of course absolutely not worth
going after.

But do other workloads feature more prominent use of this function? Or does it appear on some
critical code path in some latency-sensitive workload?


