

IAL A level Statistics 2 Hypothesis Test MS

1.Jan 2025-5

5(a)	No of meteors in 20 mins, $M \sim Po(5)$ oe	B1
(i)	P(M6) = 1 - P(M , 5)	
	=1-0.6160=0.3840	M1
	awrt 0.384	A1
(ii)	P(M, 3)	
	= 0.2650	
	awrt 0.265	A1
		(4)
(b)	$H_0: \lambda = 15$ $H_1: \lambda > 15$	B1
		(1)
(c)	For 30 mins use $X \sim Po(7.5)$ $P(X, 12) = 0.9573$	M1
	Correct probability statement: $P(X13) = 0.0427$	A1
	Critical Region X13	B1
		(3)
(d)	Test statistic $x = 12$ is not in critical region oe (so insufficient evidence to reject H_0 / insignificant result)	M1
	No significant evidence that the number of meteors to be seen	
	has increased/no significant evidence to support the	A1
	astronomy club's claim	(2)
		(2)
	<u> </u>	Total 10

(a)	B1	Po(5) seen, used or implied by correct answer in (i) or (ii). Sight (to 3sf) of any of 0.265(0) (or 0.765(0), 0.4405 (or 0.5595), 0.616(0) (or 0.384(0)), 0.7622 (or 0.2378) implies this mark.
(i)	M1	For an attempt at calculating $1 - P(M, 5)$ with a Poisson distribution. Imp. by correct answer
	A1	awrt 0.384 (condone $\frac{48}{125}$)
(ii)	A1	awrt 0.265 (independent of the M mark in (i) so B1M0A0A1 is possible)
(b)	B1	written in terms of λ or μ only (accept 7.5 instead of 15 if consistently used for both)
		evidence of Po(7.5) stated or used. Sight of any of 0.0203 or 0.9208 (or 0.0792), 0.9573 (or
(c)	M1	0.0427), 0.9784 (or 0.0216), 0.9897 (or 0.0103) to 2sf with probability statement or 3sf on their own implies this mark.
	A1	correct probability statement $P(X13)$ oe and awrt 0.0427 oe (awrt 4.27%).
	ъ.	correct critical region $X 13$ (or $X > 12$) only, with or without probability given and
	B1	independent of their (b). Allow a different letter for X but do not allow CR.
		For a correct comparison ft their CR $X \dots a$ oe (may be written as $P(X \dots a)$) where $a \dots 13$
		indicating 12 is not in the critical region. e.g. $12 < "13"$ so accept H_0
(d)	M1	Alternatively compares e.g. $P(X12) = 0.0792 (> 0.05)$ or $P(X_{**}11) = 0.9208 < 0.95$ and
		indicates do not reject H ₀ . Do not ignore contradictory non-contextual statements. Allow if they
		have a 2-tail CR provided upper CR is $P(Xa)$ oe where $a13$
	A1	Correct conclusion indep. of hypotheses and must be in context. Must mention meteors and increase OR the club's claim oe e.g. insufficient evidence to suggest the number of meteors is greater. Condone e.g. there are not more meteors / the number of meteors has not changed.

2.Jan 2024-3

3 (a)	The vacuum tubes shatter independently	B1
	The probability of a vacuum tube shattering is constant	B1
		(2)
	$C \sim B(15, 0.35)$ plus $[P(C_{3}, 9]) =]0.0142$ or $[P(C_{3}, 10)] =]0.0124$ or	
(b)	[P(C, 9)] = 0.9876	M1
	Critical regions $\begin{bmatrix} 0 \\ ,, \end{bmatrix}$ C , 1 or 10 , C $\begin{bmatrix} ,, 15 \end{bmatrix}$	M1
	[0,,] C,, 1 and 10,, C [,, 15] plus	
	$P(C_{1}, 91) = 0.0142$ and $P(C_{1}10) = 0.0124$	A1
		(3)
(c)	0.0266	B1ft
		(1)
(d)	[4 is not in the CR therefore] there is no evidence to reject Rowan's belief	B1ft
		(1)
(e)	$F \sim B(40, 0.35)$	
	H_0 : $p = 0.35$ and H_1 : $p < 0.35$	B1
	P(F, 8) = 0.0303 or CR $F, 8$	M1A1
	Sufficient evidence to reject H ₀ or significant or 8 lies in the Critical region	M1
	There is sufficient evidence to support that the proportion of type B vacuum tubes that	A 1
	shatter when exposed to alternating high and low temperatures is less than 35%	A1
		(5)
	Notes	Total 12

		Notes Total 12
(a)	B1	for one correct reason which must mention tube(s) and shatter/shattering
(a)	Б1	or 2 correct reasons not in context
	B1	for 2 correct reasons which must mention tube(s) and shatter/shattering at least once
(b)	M1	for using the correct distribution to find awrt 0.0142 or awrt 0.0124 or awrt 0.988
(0)	1411	Allow B(15, 0.35) is written and one of awrt 0.014 or awrt 0.012 or awrt 0.99 is seen
		for lower CR or C ,, 1 oe e.g. $C < 2$
	M1	or upper CR $C \dots 10^{\circ}$ oe e.g. $C > 9$ Allow other notation and any letter(s) for CR
		Do not allow CR written as a probability statement
	4.4	for both CR correct with the relevant probabilities (3 sf and must be seen in part (b)). Do not
	A1	allow CR written as a probability statement
(-)	B1ft	for awrt 0.0266 or 2.66% or ft the sum of the probabilities in (b) for "their 2 critical regions" if
(c)		seen. If no probabilities for their CR given then the answer must be 0.0266
	B1ft	for a correct statement consistent with their CR Must mention Rowan/his/her or a correct
(d)		conclusion based on Rowan's belief with the words highlighted in bold e.g. no evidence to
(u)		suggest that the proportion/probability/number/amount (allow 35% as proportion) of tubes
		that shatter has changed oe
(e)	B1	for both hypotheses correct in terms of p or π
	M1	for using or writing $P(F, 8)$ or awrt 0.0303
	A1	for awrt 0.0303 or correct CR Allow F , 8 or $F < 9$ but not if part of a probability statement
		for a correct conclusion – need not be in context. ft their probability or CR. Ignore hypotheses.
	M1	do not allow contradicting non contextual comments. May be implied by a correct contextual
		statement on its own
		for a correct conclusion – must be in context, with words highlighted in bold. ft their probability
	A1	or CR only. Independent of hypotheses. Do not allow contradicting statements. Allow
		probability/number/amount/35% for proportion. Allow decreased for less than 35%

3.June 2024-3

3(a)	A list of all the shops	B1	
			(
(b)	The shops	B1	
			(
(c)	Advantage - A sample is quicker/ cheaper / easier to process	B1	
	Disadvantage – less accurate/ may be biased / may not be representative	B1	
			(
(d)	P(X,, 6) = 0.0172 or $P(X18) = 0.0212$ or $P(X,, 17) = 0.9788$ or $X, 6$ or $X18$	M1	
	$[P(X_{,,} 6)] = 0.0172 \text{ and } [P(X_{,} 18)] = 0.0212$	A1	
	CR: [0,,]X,, 6 , 18,, X[, 30]	A1	
			(
(e)	20 is in the critical region therefore there is evidence that <u>Jian's</u> <u>belief</u> is incorrect	B1ft	
			(
(f)	$H_0: p = 0.4$ $H_1: p < 0.4$	B1	
	$J \sim B(150, 0.4) \Rightarrow \approx N(60, 36)$	M1A	1
	$P(J, 47) \approx P(Z, \frac{47.5 - 60}{6} [= -2.08333])$ $\frac{(n+0.5) - 60}{6} = -1.6449$	M1 M1	
	= 0.0188 (calc 0.018610) CR: J < awrt 49.6	A1	
	There is sufficient evidence to suggest that the proportion of shops where the stocktaking system is being used incorrectly is less than 0.4/decreased	A1	
			(

		Notes Total 15	
(a)	B1	for the idea of a list/database(oe) of all shops list of all stocktaking systems is B0	
(b)	B1	for allow shop or store(s)	
	D1	the number of shops is B0 the stocktaking systems at each shop is B0	
(c)	B1	for a correct advantage for a sample oe eg allow census take longer than a sample	
		e.g. 'a sample is more uncertain' on its own is B0	
	B1	for a correct disadvantage for a sample oe eg a census is more accurate than a sample	
		If there is no reference to sample or census assume referring to sample.	
		Ignore extraneous non-contradictory comments	
(d)	M1	for one of these probability statements correct <u>or</u> awrt 0.017 <u>or</u> awrt 0.021 <u>or</u> awrt 0.98	
	IVII	or one correct CR	
	A1	for both probabilities awrt 0.0172 and awrt 0.0212	
	A1	for both CR correct oe e.g. $X < 7$, $X > 17$ ignore any symbol used between the two	
	AI	CR tails allow any or no letter (do not allow CR stated as probabilities)	
(e)	B1ft	for stating 20 is in the CR and give correct statement. Allow the belief in words.	
		Only ft if their CR is in the form X_{i} , $C_{i} \cup X_{i}$ C_{2} (allow as probability statements)	
(f)	B1	for both hypotheses correct, using p or π . Must be attached to H_0 and H_1	
	M1	for writing or using N(60,)	
	A1	for writing or using N(60, 36)	
	3.54	for standardising (allow ±) using their "60" and "6" with either 46.5, 47 or 47.5	
	M1	for CR method n , $n + 0.5$ or $n - 0.5$ and equate to -1.6449 or better	
	M1	for using the correct continuity correction 47.5 or $(n + 0.5)$	
	A1	for awrt 0.019 or CR: $J < \text{awrt } 49.6$ or $J + 0.5 < \text{awrt } 50.1$	
		Exact binomial gives 0.01756and scores M0A0M0M0A0	
		dep on previous A1 for a correct conclusion in context using bold word (oe)	
	A1	Do not allow 'number' for 'proportion'	

4.Jan 2023-3

3 (a) (i)	$X \sim B(10, 0.1)$			
	$P(X \ge 4) = 1 - P(X \le 3) = 1 - 0.9872$	M1		
	= 0.0128 awrt 0.0128			
(ii)	$P(1 < X < 5) = P(X \le 4) - P(X \le 1) = 0.9984 - 0.7361$	M1		
(11)	or $P(X=2) + P(X=3) + P(X=4) = 0.1937 + 0.0574 + 0.0112$	IVII		
	= 0.2623 awrt 0.262	A1		
		(4)		
(b)	$H_0: p = 0.1$ $H_1: p < 0.1$	B1		
	$X \sim B(50, 0.1)$			
	$P(X \le 2) = 0.1117$ or $CR X \le 1$	B1		
	Do not reject H ₀ /Not in the critical region	M1		
	There is insufficient evidence to suggest that this result supports the managing director's			
	<u>claim</u> /not enough evidence to suggest a <u>reduction</u> in the probability of a tennis ball			
	<u>failing</u> the bounce <u>test</u>	(4)		
(-)	V = P(v, 0, 1) and we reject $H = if P(V = 0) < 0.01$	(4)		
(c)	$X \sim B(n, 0.1)$ and we reject H ₀ if $P(X = 0) < 0.01$			
	$P(X=0) = {\binom{n}{C_0}} \times 0.1^0 \times 0.9^n [< 0.01]$	M1		
	$0.9^{44} = 0.00969[< 0.01]$ $n > \frac{\ln 0.01}{\ln 0.9} \Rightarrow n > 43.7$	M1		
	n=44	A1		
		(3)		
	Notes	Total 11		

(a) (i)	M1	for writing or using $P(X \ge 4) = 1 - P(X \le 3)$
	A1	awrt 0.0128
(::)	M1	for writing or using $P(X \le 4) - P(X \le 1)$
(ii)	IVII	or for writing or using $P(X=2) + P(X=3) + P(X=4)$
	A1	awrt 0.262
(b)	B1	Both hypotheses correct. Must be in terms of p or π Must be attached to H_0 and H_1
	B1	awrt 0.112 or $CR \leqslant 1$
	M1	A correct ft statement consistent with their p -value and 0.05 or their CR and 2- no context needed but do not allow contradicting non contextual comments. The comparison of their p -value and the significance level is not counted as a non contextual statement. May be implied by a correct ft conclusion in context. Must have a p -value or CR to access this mark.
	A1	Correct conclusion in context which must be not rejecting H_0 . Must use underlined words (oe). No hypotheses then $A0$
(c)	M1	For recognising $P(X=0)=0.9^n$
	M1	For $0.9^{44} (= 0.00969)$ or $0.9^{43} (= 0.01077)$ or rearranging to $n > \frac{\ln 0.01}{\ln 0.9}$ (Allow =) $n > \text{awrt } 43.7 \text{ implies M1M1 (Allow } n = \text{awrt } 43.7 \text{ for M1M1})$
	A1	Cao
	SC	Use of tables only, $n = 40$, $p = 0.0148$ and $n = 50$, $p = 0.0052$ scores M1M0A0

5.Oct 2023-5

5 (a)	Complaints received are independent or occurring at a constant rate or singly	B1
		(1)
(b)(i)	$[P(X < 3 X \sim Po(6)) =]0.0620$ awrt 0.062	B1
(ii)	$[P(X \ge 6) =]1 - P(X \le 5) \text{ or } 1 - 0.4457 = 0.5543$ awrt 0.554	M1A1
		(3)
(c)	$H_0: \lambda = 6$ $H_1: \lambda > 6$	B1
	$P(X \ge 12) = 1 - P(X \le 11) = [1 - 0.9799]$ or $P(X \ge 11) = 1 - P(X \le 10) = [1 - 0.9574]$	M1
	$= 0.0201$ or $CR \ge 11$	A1
	Reject H ₀ /In the CR/Significant	M1
	There is sufficient evidence to suggest that the mean number of complaints received is greater than 6 per week	A1ft
		(5)
(d)	$H_0: \lambda = 6$ $H_1: \lambda < 6$	B1
	6 week period is $Po(36) \Rightarrow N(36, 36)$	B1
	$P(Y \le 26) \approx P(Y < 26.5) = P\left(Z < \frac{26.5 - 36}{6}\right)$ or $\frac{x + 0.5 - 36}{\sqrt{36}} < -1.6449$	M1 M1
	[P(Z < -1.583)] = 0.0571 (Calculator 0.05667) or x < 25.63 awrt 0.057 awrt 25.6	A1
	Do not reject H ₀ /Not in the CR/Not significant	M1
	There is insufficient evidence to suggest that the mean number of complaints received after the changes made is less than 6 per week	A1ft
	•	(7)

		Notes Total 16
(a)	B1	A correct assumption. Must be in context so need 'complaints' and then independent/random or constant rate or singly
(b)(i)	B1	awrt 0.062
(ii)	M1	For writing or using $1-P(X \le 5)$ May be implied by awrt 0.554
	A1	awrt 0.554
(c)	B1	Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ
	M1	For writing or using $1-P(X \le 11)$ or $1-P(X \le 10)$
	A1	For 0.0201 or CR ≥ 11
	M1	A correct statement – no context needed but do not allow contradicting non contextual comments
	A1ft	Correct conclusion in context with the words highlighted in bold
(d)	B1	Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ Allow use of 36 rather than 6
	B1 For writing or using N(36, 36)	
	M1	For standardising using $25.5/26/26.5$, their mean and their standard deviation or standardising using $x-0.5/x/x+0.5$, their mean and their standard deviation and setting equal to -1.6449
	M1	For a correct continuity correction written or used e.g. 26.5 or $x + 0.5$
	A1	awrt 0.057 (NB Poisson used gives 0.0512685 and scores M0M0A0)
		or CR < awrt 25.6 (Allow ≼)
	M1	A correct statement – no context needed but do not allow contradicting non contextual comments
	A1ft	Correct conclusion in context with the words in bold (Allow The mean number of complaints has
		stayed the same/not changed oe)

6.Jan 2022-3

We can assume breakdowns are [rare] independent events occurring at a constant rate	B1
we can assume breakdowns are [rare], independent events occurring at a constant rate.	
	(1)
$H_0: \lambda = 8$ $H_1: \lambda \neq 8$	B1
	(1)
$X \sim Po(8)$	
$P(X \le 2) = 0.0138$ oe $P(X \le 3) = 0.0424$ oe	M1
$P(X \ge 14) = 0.0342$ oe $P(X \ge 15) = 0.0173$ oe	M1
$X \leqslant 2 \cup X \geqslant 15$ oe	A1
	(3)
"0.0138" + "0.0173"	M1
="0.0311"	A1ft
	(2)
"[4 is] not in the critical region"	M1
So there is insufficient evidence that refurbishment has changed the mean breakdown rate	A1
	(2)
	$P(X \le 2) = 0.0138$ oe $P(X \le 3) = 0.0424$ oe $P(X \ge 14) = 0.0342$ oe $P(X \ge 15) = 0.0173$ oe $X \le 2 \cup X \ge 15$ oe "0.0138" + "0.0173" = "0.0311"

		Notes Total 9	
3 (a)	B1 A correct statement which include the words independent or constant rate or singly. No context needed		
(b)	B1	Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ .	
(-)	251	Use of Po(8) to find the lower critical value. May be implied by either 0.0138 or 0.0424 or	
(c)	M1	$X \leqslant 2$ if no probabilities shown (Calculator values: 0.01375 and 0.04238)	
		Use of Po(8) to find the upper critical value. May be implied by 0.0342 or 0.0173 or 0.9658 or	
	M1	0.9827 or $X \ge 15$ if no probabilities shown (Calculator values: 0.03418 and 0.01725 and	
		0.96581 and 0.98274)	
	A1	$X \le 2$ oe $[\cup]X \ge 15$ oe Condone the use of and/or Do not allow as probability statements	
		Allow [0, 2] or [0, 3) and [15, ∞] or [15, ∞) or (14, ∞] or (14, ∞)	
(d)	M1		
	A1ft	0.0311 Allow 3.11 or awrt 3.1[0] or awrt 0.031[0] ft their critical region	
		NB 3.11 or 0.0311 or awrt 3.1[0] or awrt 0.031[0] will score 2/2	
(a)	M1	A correct statement ft their critical region e.g. Do not reject H ₀ /Accept H ₀ /not significant – no	
(e)	IVII	context needed but do not allow contradicting non contextual comments	
	A1	Correct conclusion in context. Must include rate/number of breakdown (Allow decreased for	
		changed)	
		NB Award M1 A1 for a correct contextual statement on its own	

7.June 2022-4

		[9 marks]
		(6)
	weighing more than 180g has changed	
	There is not significant evidence to suggest that the proportion of pears	A1
	Do not Reject H ₀ or not significant or 11 does not lie in the CR	dM1
	= 1 - 0.9574 = 0.0426 [> 0.025]	A1
	$P(X11) = 1 - P(X_{,,}10)$	M1
	$X \sim B(75, 0.08) \to Po(6)$	M1
(b)		B1
		(3)
	n > 41.28 $n = 42$	A1
	$n \log (0.93) < \log (0.05)$	M1
	$[P(Y=0) < 0.05]$ $(1-0.07)^n < 0.05$	M1
4. (a)	[P(Y=0) < 0.05]	

	Notes
(a)	1 st M1 For 0.93 ⁿ or 0.93 ⁴² or 0.93 ⁴¹
	$2^{\text{nd}} \text{ M1 for } n \log (0.93) < \log (0.05) \text{ or } \log_{0.93} 0.05, n \text{ Allow} = \text{ or } \dots$
	or $0.93^{42} = 0.0474$ or 0.0475 (min 4 dp) Implied by 41.28 or awrt 41.3
	A1 42 cao NB An answer of 42 gains 3/3
	SC condone for M1 M0 A0 ($[e^{-3} =]0.04978$ (min 4dp) and $-0.07n = -3$)
(b)	B1 both hypotheses correct (may use p or π but do not allow $p(x)$) Allow 8% connected to H_0 and H_1 correctly
	1 st M1 writing or using Poisson approximation with mean 6.
	2^{nd} M1 for writing or using $1 - P(X, 10)$
	or for a CR method (must give a CR) giving $P(X, 11) = 0.9799$ or
	P(X12) = 0.0201 Implied by awrt 0.0426 or correct CR
	1^{st} A1 for 0.0426 or CR: $X \dots 12$ ignore lower CR.
	NB M1A1 for $P(X_n = 10) = 0.9574$ on its own
	3 rd dM1 Independent of their hypotheses dependent on 2 nd M1 but
	A correct statement i.e. not significant/do not reject H ₀ /Not in CR/reject H ₁
	Do not allow non-contextual conflicting statements.
	2 nd A1 For a correct contextual statement. Need proportion oe and changed oe Allow the farmers belief (oe) is not supported (bold words)
	Do not accept contradicting statements. No hypotheses is A0
	NB Award d M1A1 for a correct contextual statement on its own
	SC1: Use of one-tailed test may score B0M1M1A1M1A0 for rejecting H ₀
	SC2: Use of Binomial throughout max (3/6) B1M0M1A0dM1A0
	SC3: normal approximation prob = 0.0277 (maximum 3 out of 6)
	B1 M0 M1 for writing or using $1-P(X_*, 10.5)$ allow < implied by awrt $0.027/0.028$ A0
	dM1A0

8.Oct 2022-3

	Notes	Total 10
		(5)
	There is insufficient evidence to suggest that the <u>proportion</u> of sunflower <u>seeds</u> that grow to a height of more than 3 metres is now <u>greater</u> than 0.028	A1
	= 0.0985 or Critical region $Y13$	A1
	P(Y11)=1-P(Y,, 10) or $P(Y13)=1-0.973$	M1
	$Y \square B(250,0.028) \Rightarrow Y \square Po(7)$	M1
(c)	H ₀ : $p = 0.028$ H ₁ : $p > 0.028$	B1
		(1)
(b)	0.0476	B1ft
		(4)
	$CR X_{*}, 8 \text{ and } X \dots 21$	A1
	$[P(X_{1}, 8) =]$ awrt 0.0303 and $[P(X_{1}, 21) =]$ awrt 0.0173	A1
	$P(X_{,,} 8) = \text{awrt } 0.0303 \text{ or } P(X_{,}21) = \text{awrt } 0.0173 \text{ or } P(X_{,,} 20) = \text{awrt } 0.9827$	M1
3(a)	H ₀ : $p = 0.35$ H ₁ : $p \neq 0.35$	B1

		110113
(a)	B1	Both hypotheses in terms or p or π
	M1	One of the correct probability statements. Implied by a correct critical region
	A1	awrt 0.0303 and awrt 0.0173
	4.1	Both parts of the critical region given. Allow alternative notation e.g. $X < 9$ and $X > 20$ Do not
	A1	allow as probability statements.
(b)	D4	For 0.0476 Allow awrt 0.0475 (calculator) or ft their two critical regions provided probabilities are
	B1	seen in part (a) Common ft is for X , 7 and X 21 gives 0.0297
(c)	D1	Both hypotheses in terms or p or π – If already lost the mark in (a) for incorrect letter allow any
	B1	letter
	M1	Po(7) written or used
		Writing or using $1-P(Y, 10)$ or $1-0.9015$ or $1-0.973$ (May be implied by 0.0985)
		or may be implied by $Y13$ provided Po(7) seen or used
	M1	If using N(7, 6.804) or N(7, 7) allow use of $1-P(Y, 10)$ or $1-P(Y, 10.5)$
	1,111	B(250, 0.028) gives 0.09549 and implies M1
		N(7, 6.804) gives awrt 0.09 (Calc gives 0.08983) or awrt 0.13 (Calc gives 0.125) and implies
		MI
		N(7, 7) gives awrt 0.09 (Calc gives 0.09293) or awrt 0.13 (Calc gives 0.1284) and implies M1
	A1	awrt 0.0985 or CR: Y13 provided Po(7) seen or used (Allow any letter for the CR)
		Independent of the hypotheses but dependent on the previous M1A1 being awarded. A correct
	A1	conclusion in context. Allow amount/number for proportion, sunflowers for seeds and increased oe
		for greater. Ignore any non-contextual statements

9.June 2021-1

			· ·			\neg
1.	(a)	[$X \sim$ the number of pansy seeds that do not germinate or $Y =$ the numberthat <u>do</u> germinate] $X \sim B(20, 0.05)$ or $Y \sim B(20, 0.95)$				
					B1	
	(i)	$P(X \le 4) - P(X \le 2) = 0.9974 - 0.9245$ or				
		$\binom{20}{3}0.0$	$5^{3} \times 0.95^{17} + {20 \choose 4} 0.05^{4} \times 0.95^{16}$	= 0.05958+ 0.01332	M1	
		= 0.072909		awrt 0.0729	A1	
	(ii)	$P(X \leq 1)$ or $P(Y \geq 19)$	$=20\times(0.95)^{19}(0.05)+(0.95)^{2}$		M1	
		= 0.7358	= 0.735839	awrt 0.736	A1 (5)
	(b)	[Let $W = \text{no. of packets where } Y >$	18] $P(W=5) = ("0.7358$.")5	M1	
		•	= 0.21573	,	A1	
			0.21373	<u>0.210</u>	(2	2)
					\	,
	(c)	$H_0: p = 0.05$ $H_1: p > 0.05$			B1	
					(1	1)
	(d)	[V= no. of seeds that do not germina	nte V~B(100, 0.05) approxima	ates to] $V \sim Po(5)$	M1A1	
			CR for 1-tail in (c)	CR for 2-tail in (c)		
		$P(V \geqslant 8) = 1 - P(V \leqslant 7)$		$P(V \ge 10) = 0.0318$	M1	
		=1-0.8666	$P(V \geqslant 10) = 0.0318$	$P(V \geqslant 11) = 0.0137$		
		= 0.1334	CR $V \geqslant 10$ oe	$CR V \geqslant 11 \text{ oe}$	A1	
		Accept H ₀ or not significant or 8 or	does not lie in the critical region	1	dM1	
		Data consistent with Spany's claim			Alcso	
		or insufficient evidence that perce			(6	6)
					Total 1	4

	Notes
(a)	B1: writing or using B(20,0.05) [Allow $Y \sim B(20, 0.95)$ if Y is clearly defined]. Implied by 1 correct prob.
(i)	M1: for $P(X \le 4) - P(X \le 2)$ and one correct prob. or $P(X = 3) + P(X = 4)$ and 1 correct prob.
(ii)	M1: for $P(X \le 1)$ or $[20] \times (0.95)^{19} (0.05) + (0.95)^{20}$ - condone missing 20
(b)	M1: for $(their(a)(ii))^5$
(c)	B1: both hypotheses correct with p or π
(d)	1 st M1: for realising a Poisson approximation is appropriate. NB Po(95) is M0A0 1 st A1: writing or using $V \sim \text{Po}(5)$ i.e correct mean for the Poisson.
	2nd M1: for writing or using $1 - P(V \le 7)$ or $P(V \le 7) = 0.8666$
	or writing $P(V \ge 10) = 0.0318$ or $P(V \ge 9) = 0.0681$ or $P(V \ge 11) = 0.0137$ leading to a CR. Implied by correct CR or probability = awrt 0.133
	2nd A1 : for awrt 0.133 or $V \ge 10$ oe (e.g. $V > 9$) or $V \ge 11$ oe allow any letter but CR must match part(c
	3 rd dM1: dep on 2 nd M1. ft their CR or probability. A correct statement based on comparing 8 with their CR or their prob with 0.05 or 0.025 [condone 0.866<0.95]—contradicting non-contextual comments M
	3 rd A1 cso: all previous marks must be awarded. A correct statement in context. Need Bold words. NB award M1A1 for a correct contextual statement on its own.
	If there are no hypotheses or they are the wrong way around, then 3 rd M0 3 rd A0 Normal approximation: Award marks in pairs with 2, 4 or 6 marks available
SC1	Sight of N(5 or 95, $\sqrt{4.75}^2$) M1A1; probability awrt 0.125/6 M1A1; Correct contextual concl' dM1A1
SC2	No approximation: Use of B(100, 0.05) M0A0; probability awrt 0.128 or CR \geq 10 M1A1; then M0A0

10.Oct 2020-4

	1		
4(a)	Common Spotted-orchids occur singly/randomly/independently	B1	
			(1)
(b)(i)	$S \sim \text{Po}(4.5)$		
	$P(S=6) = \frac{e^{-4.5} \cdot 4.5^6}{6!}$ or $P(S \le 6) - P(S \le 5)$	M1	
	= 0.1281 awrt 0.128	A1	
(ii)	$P(4 < S < 10) = P(S \le 9) - P(S \le 4)$ or $0.9829 - 0.5321$	M1	
	= 0.4508 awrt 0.451	A1	
			(4)
(c)	$H_0: \lambda = 9 H_1: \lambda > 9$	B1	
	$M \sim \text{Po}(9)$ $P(M \ge 11) = 1 - P(M \le 10)$ or $P(M \ge 15) = 0.0415$	M1	
	$= 0.294$ or CR $M \ge 15$	A1	
	Accept H ₀ or insignificant or 11 does not lie in the critical region	dM1	
	There is insufficient evidence to support Juan's belief	A1	
			(5)
(d)	$T \sim N(90, 90)$	B1	
	$P(T < 70) = P\left(Z < \pm \left(\frac{69.5 - 90}{\sqrt{90}}\right)\right) \text{ or } P(Z < \pm 2.160)$ awrt 2.16	M1	
	= 0.0154 awrt 0.0154	A1	
			(3)
(e)	$V \sim \text{Po}(200 \times 0.012) = \text{Po}(2.4) \ V \sim = \text{Po}(2.4)$	M1	
	$P(V=0) + P(V=1) = e^{-2.4}(1+2.4)$	dM1	
	= 0.30844 awrt 0.308	A1	
			(3)

		Notes Total 16		
4(a)	B1	One of the given reasons. No context needed		
(b)(i)	M1	For $\frac{e^{-\lambda}\lambda^6}{6!}$ with any value for λ or writing or using $P(S \le 6) - P(S \le 5)$		
	A1	awrt 0.128		
(ii)	M1	Writing or using $P(S \le 9) - P(S \le 4)$		
	A1	awrt 0.451		
(c)	B1	Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ . Allow 4.5 instead of 9.		
	M1	Writing or using Po(9) and $1 - P(M \le 10)$ or $P(M \ge 15) = 0.0415$ oe Implied by correct CR or		
	A1	awrt 0.3 or 0.29 or better (0.2940) 0.3 or 0.29 or better (0.2940) or $M \ge 15$ oe SC: Condone $P(X \le 10) = 0.7$ or better (0.705988) for M1A1		
	dM1	Dep on M1 A1. A correct statement— no context needed but do not allow contradicting non contextual comments. Allow opposite conclusion if 2-tail hypotheses given.		
	A1	Correct conclusion. If H_0 is 2- tail the opposite conclusion must be given. No hypotheses or H_0 $\lambda < 9$ gets A0. Allow claim instead of belief. Alternative: There is insufficient evidence to support hat the number of Common Spotted-orchids has increased//is not 9/has changed oe (with the bold words included).		
(d)	B1	Writing or using N(90, 90)		
	M1 Standardising with 68.5 or 69.5 or 70.5 and their mean and sd			
	A1			
(e)	M1	Writing or using Po(200×0.012) Allow Po(200×"their d")		
	dM1	Dependent on using Poison. For using / writing $P(V = 0) + P(V = 1)$ or $e^{-\lambda}(1 + \lambda)$ or $P(V \le 1)$ oe		
	A1	awrt 0.308 NB Binomial gives 0.3066		
·				

11.Jan 2019-4

4. (a)	$H_{0:} p = 0.35$ $H_{1:} p > 0.35$	B1
	Probability route CR route	
	$P(X \ge 11) = 1 - P(X \le 10) [= 1 - 0.9468] \mid P(X \le 11) = 0.9804$	M1
	$P(X \ge 12) = 0.0196$	
	$= 0.0532$ CR: $X \ge 12$	A1
	Do not Reject H ₀ or not significant or 11 does not lie in the CR	dM1
	Hadi's belief is not supported or	A1cso
	the <u>proportion</u> of customers paying by <u>credit card</u> is not greater than 35%.	
		(5)
(b)	$X \sim B(20, 0.35)$	
	[E(X) =] 7	B1
	S.D. = $\sqrt{20 \times 0.35 \times 0.65}$ [= $\sqrt{4.55}$ = 2.133]	B1
	"7" + 2 × "2.133" $11 - "7" < 2 × 2.133$ " $\frac{11 - "7"}{\sqrt{"4.55"}}$ $11 - 2 × "2.133$	" M1
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	A1cso
		(4)
		[9 marks]

	,
	Notes
(a)	both hypotheses correct (may use p or π). Must have H_0 and H_1 1st M1 for writing or using $1 - P(X \le 10)$ or if leading to a CR allow $P(X \le 11) = \text{awrt } 0.980$ (condone 0.98) or $P(X \ge 12) = \text{awrt } 0.0196$ (may be implied by awrt 0.0532 or correct CR) A1 for 0.0532 or CR: $X \ge 12$ oe
	NB M1 A1 for 0.9468 < 0.95
(b)	2 nd B1 for a correct expression for standard deviation M1 for using 'mean' + 2 × 'standard deviation' or 11- "their $E(X)$ " or $\frac{11-"their E(X)"}{"Their sd"}$ If $E(X)$ and sd not given then allow $5 < E(X) < 10 \text{ and } 0 < sd < 5$
	A1cso for comparison with 11 or 4 or 2 allow awrt (11.3 or 4.27 or 1.88 or 6.43) oe and no errors seen