

Simulation - Speed of Light

Simulation Link

http://physicsmonster.org/content/simulation/simulation_relativity/index.html#id_section_speed_of_light

Introduction

This simulation illustrates the theory behind the lab [Speed of Light](#), in which the speed of light is measured by a mirror rotating at high speed, causing slight deviation in a reflected beam of laser.

The speed of light is greatly slowed down and is adjustable in the simulation to illustrate the concepts.

Theory

Angular velocity:

$$\omega = \frac{\Delta\theta}{\Delta t}$$

Frequency:

$$f = \frac{\omega}{2\pi}$$

Prelab

1. Use the law of reflection (angle of incidence = angle of reflection) to show that when a plane mirror rotates by $\Delta\theta_{\text{mirror}}$, the reflected beam will rotate by $\Delta\theta_{\text{detector}} = 2\Delta\theta_{\text{mirror}}$. Your proof should include figures.
2. Write down the time Δt_{return} it takes for a photon to bounce off the rotating mirror at the center, hit the circular mirror of radius r and return to the rotating mirror for a second time. Write your answer in terms of the radius r , and the speed of light c .
3. Find $\Delta\theta_{\text{mirror}}$ for the duration of time Δt_{return} . Write your answer in terms of the radius r , angular velocity of the rotating mirror ω , and the speed of light c .
4. Use your results above to write the speed of light c in terms of ω , r , and $\Delta\theta_{\text{detector}}$.
5. Rewrite your results above to write the speed of light c in terms of f , r , and $\Delta\theta_{\text{detector}}$.

Procedure

1. While fixing the speed of light in the simulation c_{sim} , try about seven different ω in the simulation and record $\Delta\theta_{\text{detector}}$. Collect your data in Table 1.
2. Change to a different values of c and fill in Table 2 - 5.

Data

Table 1: Photon deflection at different angular velocity of rotating mirror.

Table 2: Photon deflection at different angular velocity of rotating mirror.

Table 3: Photon deflection at different angular velocity of rotating mirror.

Table 4: Photon deflection at different angular velocity of rotating mirror.

Table 5: Photon deflection at different angular velocity of rotating mirror.

$c_{sim} =$				
$\omega (rad/s)$	$\Delta\theta_{detector} (\circ)$	$\Delta\theta_{detector} (rad)$	$c_{measured} (m/s)$	Percentage difference

Analysis

1. Use the equation you derived in the pre-lab to calculate the speed of light based on your measurement, i.e. $c_{measured}$. Calculate the percentage difference with c_{sim} .
2. Plot ω vs $\Delta\theta_{detector} (rad)$ for each of the tables above *in the same graph* (here is a tutorial on how to do it: https://youtu.be/Tw1T-Eqx_LU?si=-1OkoQccPH70Uo66). Theoretically, what do you expect the slopes to be?
3. Use the slopes of the graph to deduce the speed of light c_{slope} , one for each table.
4. Compare c_{slope} with c_{sim} for each table.

Questions

1. In a real world experiment, $c \approx 3 \times 10^8 m/s$, $r \sim 10m$, $\Delta\theta_{detector} \sim 10^{-4} rad$. What is the approximate frequency f of the rotating mirror needed?