

SNS COLLEGE OF TECHNOLOGY COIMBATORE-35 DEPARTMENT OF MECHATRONICS

Staff InCharge : Dr.T.Balasubramani, ASP/MC

Course : Strength of Materials (ME 217)

Class : II Year B.E. (Mechatronics)

Academic Year : 2014-2015 - Odd Semester

LESSON PLAN

Sl.No.	Topic	Method of Instruction	No. of Periods	Book to be referred
UNIT I				
STRE SS STRA IN DEFO RMA TION OF SOLI DS				
1	Rigid and Deformable bodies	Black board	2	T1, T2, R1
2	Strength, Stiffness and Stability	PPT	1	T2, R4
3	Stresses; Tensile, Compressive and Shear	Black board	1	T1
4	Deformation of simple and compound bars	Black board	2	T1, R4
5	Simple and Compound Bars under axial load	Black board	2	T2, R5
6	Elastic constants	Black board	2	T2, R1
7	Strain energy and unit strain energy	Black board	1	T2, R4
8	Strain energy in uniaxial loads	Black board	1	T1, T2, R4
9	Revision & University QP Discussion		1	
Unit I	13			
UNIT II				
SHE AR				

FOR CE, BEN DING MOM ENT AND THE ORY OF BEN DING				
1	Types of beams: Supports and Loads	Black board	1	T1, T2, R1
2	Shear Force and Bending Moments in Beams	Black board	2	T2, R4
3	SF and BM for Cantilever, SSB and OHB	Black board	3	T2, R5
4	Stresses in beams	Black board	1	T1, T2, R4
5	Theory of simple bending	PPT	1	T2, R3
6	Stress variation along the length and in the beam section	Black board	1	T2, R4
7	Strain energy in bending	Black board	1	T2, R4
8	Revision & University QP Discussion	Black board	1	
Unit II	11			
UNIT III TOR SION AND SPRI NGS				
1	Analysis of torsion of circular bars	Black board	1	T1, T2, R1
2	Shear stress distribution	PPT	1	R1
3	Bars of Solid and hollow circular section	Black board	1	R2
4	Stepped shaft, Twist and torsion stiffness	Black board	1	T1, T2, R1
5	Compound shafts - Fixed and simply supported shafts	Black board	1	R1

6	Application to close-coiled helical springs	Black board	1	T2, R5
7	Maximum shear stress in spring section including Wahl Factor	Black board	1	T2, R5
8	Design of helical coil springs - stresses in helical coil springs under torsion loads.	Black board	1	T1, T2, R5
9	Deflection of helical coil springs under axial loads	Black board	1	R5
10	Design of helical coil springs	Black board	1	T1, T2, R5
11	Stresses in helical coil springs under torsion loads	Black board	1	T2, R5
12	Strain energy in Torsion	Black board	1	T1, T2, R5
13	Revision & University QP Discussion		1	
Unit III	13			
UNIT				
DEFL ECTI ON OF BEA MS AND COL UMN S				
1	Elastic curve of Neutral axis of the beam under normal loads	PPT	2	T1, T2, R3
2	Evaluation of beam deflection and slope: Double integration method	Black board	2	T1, T2, R4
3	Area moment theorems for computation of slopes and deflections in beams	Black board	2	T2, R4
4	Macaulay Method, Moment-area Method	Black board	2	T2, R3
5	Conjugate beam method	Black board	2	T1, T2, R5
6	Columns - End conditions - Equivalent length of a column - Euler equation	Black board	2	T1, T2, R4

7	Slenderness ratio - Rankine formula for columns	Black board	2	T1, T2 R3
8	Revision & University QP Discussion		1	
Unit IV	15			
UNIT V				
ANA LYSI S OF STRE SSES IN TWO DIM ENSI ONS				
1	Biaxial state of stresses	PPT	2	T1, T2, R1
2	Thin cylindrical and spherical shells	Black board	2	T2, R3
3	Deformation in thin cylindrical and spherical shells	Black board	2	T2, R3
4	Biaxial stresses at a point	Black board	1	T2, R3
5	Stresses on inclined plane	Black board	1	T1, T2, R4
6	Principal planes and stresses	Black board	2	T1, T2 R3
7	Mohr's circle for biaxial stresses, Maximum shear stress	Black board	2	T2, T3, R4
8	Revision & University QP Discussion		1	
Unit V	13			

Total Hours: 60[Lecture]+5[Revision]=65

TEXT BOOKS:

- T1 Popov E.P, "Engineering Mechanics of Solids", Prentice-Hall of India, New Delhi, 1997. (Unit I, II, III, IV,V)
- T2 R.K.Rajput, "Strength of Materials", S.Chand and Company Ltd, New Delhi, 2007. (Unit I, II, III, IV,V)

REFERENCES:

- R1 R.S.Khurmi, "Strength of Materials", S.Chand and Company Ltd, New Delhi, 2006. (Unit I, II, III,V)
- R2 Kazimi S.M.A, "Solid Mechanics", Tata McGraw-Hill Publishing Co., New Delhi,1981. (Unit I,II, III)
- R3 Ryder G.H, "Strength of Materials, Macmillan India Ltd"., Third Edition, 2002 (Unit I, II, III, IV,V)
- R4 Ray Hulse, Keith Sherwin & Jack Cain, "Solid Mechanics", Palgrave ANE Books, 2004.

(Unit I, II,V)
R5 Singh D.K "Mechanics of Solids" Pearson Education, 2002. (Unit I, II, III, IV,V)

Staff In Charge HOD Principal