Brock's Guide to Data Archiving

This is a collection of tips and tricks and is not meant to address curated archiving, for that
contact the Library about Deep Blue, or domain specific repositories such as ICPSR.

The goal in this document is to lower the cost of preserving digital data by making trade offs in

ease of use and / or performance.

Finding files on Linux & Mac with find
Basic Find
Note on greater than, less than and equal
Using find to run a command on each matched file

Compression
Linux / Mac Compression - gzip, bzip2, xz, 1z4
Parallel Versions of gzip, bzip2, Izma/xz, 1z4

Zip Archive/Compression Tool (Windows)

Tar Archive Tool (Linux, Mac)

Basics - Create Archive
Basics - Extract Compressed Archive

Advanced Tar
Tar with Parallel Compressors
Saving an Index of Files in an Archive
Expand tar file to a Different Location
Extracting Specific Files from Tar

Tar and Archives Bigger than Source Data (Sparse Files)

Archivetar - All In One Archive Tool

Great Lakes Three Line Archive to Data Den

Archivetar Examples
Create Backup of all Files, Compress with Gzip Leave Originals
Prep Directory for Data Den
Auto Upload to Data Den

Unarchive Examples
Unarchive
Unarchive over top of existing data skipping files that already exist

Multiple tar/compressors in parallel -- GNU Parallel

Parallel File Utilities, cp, rm, find, chmod - mpiFileUtils

© © © © 0000 0o NN~NNOoO O Db d W w ww

_ A A = =

e
N -

https://deepblue.lib.umich.edu/
https://deepblue.lib.umich.edu/

Basic find, copy, delete (dfind, dcp, drm)
Finding Duplicate Files

Data Transfer & Sharing
Transfer -- Globus
Campus Globus Endpoints
Sharing -- Globus
Other Options
RClone

Storage Solutions
Locker
Data Den

Scanning Existing Data for Expected Archive Behavior

Archivescan on ARC Systems
Archivescan on non-ARC Systems
Data Den Optimal File Size
Advanced Data Den + Locker Active Archive
Google Drive / DropBox etc.

HDFS / Spark Hadoop
Importing/Exporting data in Parallel
Native Compressed Data

Advanced Tools
Data Den Active Archive
Technical Overview
Archivescan is a tool for archive users
Size Cache Requirements for migrated data
List files on Locker Cache or Only on Tape
Recall a Folder to Disk Cache
Active Archive Policies
Example Active Archive Use Cases
Active Archive Cost Calculator
Notes for IT Staff
Grand Unified File Index
ARC Provided GUFI Container and Reports
Scanning a Filesystem / Build Index
ARC Reports

12
12

13
13
13
13
14
14

14
14
14
15
15
15
15
16
18

18
18
18

19
19
19
19
20
20
20
20
21
21
21
22
22
22
23

Finding files on Linux & Mac with find

Linux and Mac provide a very flexible tool find. This tool can be used find objects that match
specific criteria of the object such as:
e Is afile, directory, socket, etc.

e User or group that owns the file
e Permissions of the file
e Last access, modify, or change of the file
e Size of the file
Basic Find
Find all files in current directory are owned by user labmanager

find . -user labmanager -type f

Find all files greater than 100MBytes
find . -type f -size +100M

Find all files last accessed less than 60 days ago and owned by group comp-lab
find . -type f -atime -60 -group comp-lab

Note on greater than, less than and equal

Find has many options where you may want to select all files larger than X or last accessed in
last 30 days etc. This is a common mistake as the greater and less than options are not
inclusive:

e -size +60M # Over 60 Megabytes
e -size o0M # Exactly 60 Megabytes
e -size -60M # Less than 60 Megabytes

Using find to run a command on each matched file

Find provides the —exec command to run on each file. Files are not passed as a list but each
match is passed one at time. The file is substituted where {} appears. The command needs
to be terminated with \ ;

Delete all files owned by olduser,
find . -type f -user olduser -exec rm -f {} \;

Delete empty directories owned by olduser,
find . -type d -user olduser -empty —-exec rmdir {} \;

Compression

The simplest way to save on storing data that is currently not needed is to compress it.
Compared to other options compression is trading time & complexity for size.

There are many different compression methods. Some are specific to the sort of data (eg cram
for genomics) and can achieve better compression or speed but only for a specific data type.
When selecting a compressor think about the ubiquity of the algorithm for anyone who may
need to access the data in the future, as well as how well tested it is to trust your data.
Corrupted compressed data behaves like encrypted data and often cannot be recovered.

Linux / Mac Compression - gzip, bzip2, xz, 1z4

Command | Suffix Availability | Speed
gzip .gz High Fast
bzip2 .bz2 High Medium

The above are the most common compression tools and are available by default on most Linux
and Apple systems. Other tools gaining favor but are not as ubiquitous are xz/1zma which is
slower but provide better compression than bzip2 and 1z4 which is much faster but gives
worse compression.

Decompress myseq.fqg.gz with gzip,
gzip -d myseq.fqg

Compress myseq. fg creatingmyseq.fqg.bz2 and leave the original file (default deletes
original).
bzip2 --keep myseq.fq

Parallel Versions of gzip, bzip2, Izma/xz, 1z4

The most popular compression programs in large scale research are gzip, bzip2, lzma/xz,
and 1z4. Most versions of these you will find installed on common platforms only support single
CPU cores. The following are fully forwards and backwards compatible implementations of the

classic single threaded compressor that in many cases provides significant time saving on any
modern multi-core system.

Command

gzip
pigz
lbzip?2
mpibzip2
xz -TO
pixz
zstd

1z4

Notes:

Compatible | Parallel

gzip
gzip
bzip2
bzip2
xz/lzma
xz/lzma
zst

|z4

Compress
No

Yes

Yes

Yes

Yes

Yes

Yes

No

Parallel
Decom.

No

No

Yes

Yes

No

Yes

Yes

No

'Speed
vs. Gzip

1x
32x

23X

5.5x
5.5x
67X

42.2x

Gzip Size
153 G

153G
153G
151G
151G
137G
137G
155G

171G

e pigz can only compress in parallel with very minimal speedup on decompression

with a parallel aware compressor
e 1z4 is not parallel aware but is by far the fastest compressor of all, but with the least
space savings

xz requires —T0 option to use all cores in the system or will default to 1
xz cannot decompress files in parallel but pixz can
lbzip2 andmpibzip2 can only decompress in parallel if the archive was compressed

Zip Archive/Compression Tool (Windows)

Windows has a built in zip archive tool. You can use it to take a folder and turn it into a single
.zip file which can then be moved to an archive like Data Den.

' Example Data 222 GByte backup of a Box Account on 36 core Great Lakes node
Speedups are relative to serial gzip, parallel versions of slower compressors (xz, bzip2, etc) will be faster
compared to their serial version

Use is simple and only provides a single operation of zipping an entire folder by right clicking on
the folder to archive selecting “Send to” — Compressed (zipped) folder

[oEefipped Add to VLC media player's Playlist

Open

Pin to Quick access

& Play with VLC media player
Scan with Windows Defender...

Give access to

Restore previous versions

Include in library »
Pin to Start

Send to Bluetooth device
Cut Q Compressed (zipped) folder
T B Decktop (create shortcut)
Documents
Create shortcut F ient
ax recipien
Delete . . F' i
=1 Mail recipient
Rename i
E TeamViewer
Properties T ko]

This will create a new file that will have the icon of a zipper and a folder. It is a single zipped
file, that can be opened on Linux systems with the unzip myzip.zip command or double
click on Windows.

ped ToBefipped

Tar Archive Tool (Linux, Mac)

Tar is the ubiquitous archive tool used in research. It provides a multitude of options. It can take
a directory or list of files and turn them into a single optionally compressed file.

We will use cover the following options

Long form Short Form Description

--create -c Make a new tar archive

--extract -X Extract existing archive

--file <file> -f <file> Name of archive to create or extract
--verbose -v Verbose output (print files as tar goes along)
--gzip -z Compress/Decompress with Gzip

--bzip2 -3 Compress/Decompress with Bzip2

Basics - Create Archive

Use the --create, --file and --verbose options to create an archive out of
to_archive folder and print what's happening
tar --create --file myarchive.tar to_archive

Basics - Extract Compressed Archive

Use the -x, -f and -z options to extract archive myarchive.tar.gz into the current folder

not printing output

tar -xzf myarchive.tar.gz

Advanced Tar

Users tend to default to using a compressor with tar such as -z or -3. These options often if
used on binary or already compressed data (eg. video or lossy images like jpeg) will drastically
increase archive time with minimal savings in space.
networks such as those at ARC it can at times be better to not use compression with tar for the
bulk of your data as it takes the most time.

Tar with Parallel Compressors

It is possible to tell tar to use compression programs it does not know about as long as they

On very fast storage systems and

support common conventions. Parallel compressors provide significant performance

advantages over the serial versions. All of the parallel compressors except mpibzip2 can be

used as below:

Compress with parallel bzip2 compression
tar -I lbzip2 -cf myarchive.tar.bz2 <directory>

Decompress with parallel bzip2 compression
tar -I lbzip2 -xf myarchive.tar.bz2

Saving an Index of Files in an Archive

Often we need to find where a specific file is. This can be solved two ways, printing the index of
an existing tar, or saving a list when the tar is created. The first is very slow as tar does not
store an index but must actually read every block of data. The second requires planning ahead.

Print all files in an existing tar file with -tv
tar -ztvf myarchive.tar.gz

Save Index when tar is created with —-v and tee
tar -cvf myarchive.tar.gz <directory> | tee myarchive.txt

You can then search for files using simple grep -i pattern myarchive.txt

Expand tar file to a Different Location

Often it would be desirable to expand a tar that lives in one location (eg slower bulk storage) to
a different location (fast storage). Often both locations are not big enough to hold the tar and
the expanded version. Using the -C flag you can tell where to expand a tar

tar -xf myarchive.tar -C /fast/dir/

Extracting Specific Files from Tar

It is possible to extract specific files rather than expand an entire archive. This can avoid
needing the full space to store the full expanded archive. This generally does not speed up the
extraction process as the archive must be read at the start of the archive until the data is found.

Extract file run2/datal
tar -xvzf myarchive.tar.gz run2/datal

Extract entire directory run2/

tar -xvzf myarchive.tar.gz run2

Wildcards and complex pattern matching is possible.

https://www.tutorialspoint.com/unix_commands/grep.htm
https://www.cyberciti.biz/faq/linux-unix-extracting-specific-files/

Tar and Archives Bigger than Source Data (Sparse Files)

If you ever find a tar being significantly larger than the source data this is most often caused by
sparse files. This normally only happens when using tar without a compression option as
compressors will address the holes in sparse files.

If you don’t want to use a compressor eg. to save time on a fast large filesystem, you can use
the -—sparse option to GNU tar the default on most systems to have tar not create empty
space for sparse files. This does not in any way damage the data.

Archivetar - All In One Archive Tool

Archivetar is a tool that aims to address many of the common bottlenecks when archiving
projects at scale. It's intended to prep an entire folder for upload to Data Den or AWS Glacier or
similar low cost, but sensitive to file size / file count. It addresses performance by supporting
most of the parallel compression tools as well as parallelism across lists of files. By avoiding
single extremely large archives it makes management or extracting subsets of data much
easier.

Great Lakes Three Line Archive to Data Den

module load archivetar

cd <folder>

archivetar --prefix my-archive --destination-dir
/<dataden-volume>/<folder>/

wait for globus transfers on globus.org to complete, before
deleting originals.

Archivetar Examples

Create Backup of all Files, Compress with Gzip Leave Originals

Prefix tar’s with my-backup

Each tar before compression should be at least 100G
To include all files don’t set --size

archivetar --prefix my-backup --tar-size 100G --gzip

https://arc-ts.umich.edu/data-den/

Prep Directory for Data Den

While not required, often the largest files in the data set are already binary and benefit minimally
from compression. But reading TBytes of data through a compressor for no space savings can
be much slower than raw network & disk speed. This example includes only files less than
10GB in the archives, and deletes them after they are in the tar. We will also compress those
small files. This will leave tar’s of “small” files and the large files. The resulting directory can be
directly uploaded to Data Den. The total number of files often reduced by 90% or more, but
reduces the time to compress by 50% or more.

Steps:
1. Bundle small files into tars and save list of files with archivetar
2. Delete files in bundles with archivepurge
3. Upload entire folder archives + large files

archivetar --prefix my-archive --size 10G --tar-size 100G --gzip
--save-purge-list

use my-archive-<timestamp>.cache to delete files in archive
archivepurge --purge-list my-archive-*.cache

Auto Upload to Data Den

This example uses the Globus API to directly upload from Great Lakes to Data Den an already
prepped version. When complete if just a backup you can delete all my-archive* files or if an
actual archive, delete when the globus transfers finish.

NOTE you must wait for the transfers to finish. The tool will complete before the transfers do so
you need to monitor them at globus.org.

If using the defaults --source and --destination are not required on ARC-TS systems
unless not using the default values.

archivetar --size 10G --tar-size 100G --1z4 --prefix my-archive \
--source umich#greatlakes --destination umich#flux \
-—destination-dir /flux-support-dd/brockp/archive-test/

:> fast
A transfer
reliable

=) —=

] Files>100MB B Files<100MB

Archive Full or Close to Full folders

By defult archivetar will create tars as fast as possible and leave the created tar. Thus ignoring
compression archiving 10TB of data will require 20TB of space (origonal plus tars). This is not
desirable for very large archives or when limited space is available. There are two ways to
address this:

--rm-at-files

This tells archivetar to wait for a tar to be uploaded and then delete the local copy. Thus
archivetar won’t move onto the next tar until the current one is complete. This often means you
can archive with less than 1TB of free space. This also is useful for automation because
archivetar will leave a folder as though it was never there.

--bundle-path <path>

This tells archivetar to create all files (tar, index.txt etc) in an alternative location. A popular one
is/scratch on the HPC clusters or /tmp/ on linux workstations. Thus allowing archiving without
ever writing any data to the current directory being archived.

Unarchive Examples

Archivetar doesn’t do anything special other than wrap regular tar. Thus all archives can
be expanded using commands available on any workstation. Unarchivetar is a simplification
similar to archivetar and uses parallelism to speed the process but is not required.

Unarchivetar has several options that allow it to be used as a backup. This means skipping
files that already exist, or are newer, when expanding an archive.

Unarchive

unarchive prefix my-archive
unarchivetar --prefix my-archive

Unarchive over top of existing data skipping files that already exist

unarchivetar --prefix my-archive --skip-old-files

Multiple tar/compressors in parallel -- GNU Parallel

If CPU is not limited, often invoking multiple compress/tars at once can reduce total runtime.
The simplest way to invoke multiple at a time, is with GNU Parallel. The format of parallel is
to create a list, a template and invoke that multiple times. By default it will invoke one template
per core.

Compress every file in the current directory limiting to only 10 copies at a time with pigz.
ls | parallel -j 10 --progress pigz {}

Tar the directoriesA B ¢ named A.tar, B.tar, etc.
parallel --progress tar -cf {}.tar ::: A B C

Parallel File Utilities, cp, rm, find, chmod -
mpiFileUtils

Installed on ARC-TS Systems
module spider mpifileutils

Mpifileutils provides parallel versions of many common file manipulation utilities. As
many modern filesystems are highly multi-threaded, having multiple 10 requests can mask
network latency and metadata locking issues. In addition because the tools use MPI they can
be run in parallel across multiple systems aggregating their network capacity for shared file
systems.

There are several tools of interest dwalk, dfind, dcp, drm, dchmod. They mostly work
the same and you can use the --output and --input options to chain the results for df ind
to dcp for example.

https://www.gnu.org/software/parallel/parallel_tutorial.html
https://mpifileutils.readthedocs.io

Basic find, copy, delete (dfind, dcp, drm)

Find all files owned by user brockp in /home not accessed in 180 days copy to new location,

then, delete them using 12 cores at a time

mpirun -np 12 dfind --user brockp --atime +180 --output

filtered.cache /home
mpirun -np 12 dcp --input filtered.cache --progress 10
/destdir/

mpirun -np 12 drm --input filtered.cache

Find all files larger than 1G in ~ and print
mpirun -np 12 dfind --size +1GB --print ~

Finding Duplicate Files

Often it is useful to find if data has been duplicated. This is very intensive as all data in a path
will be read. The parallel ddup will speed this up significantly by splitting the hash calculation
across multiple cores at a time, possibly across many hosts. Eg. at ARC-TS we are able to

sustain comparing well over 2 GB/s.

mpirun -np 12 ddup /path/to/walk/

Data Transfer & Sharing

Transfer -- Globus

We highly recommend using Globus.org for data transfer the benefits include:
e Full Mac, Linux, Windows Support
e Extreme performance
e High Reliability including server reboot and network changes mid-transfer
e No Firewall Ports Required
TODO Video Tutorial

Campus Globus Endpoints

ARC maintains a list with links: https://arc.umich.edu/globus/#document-4

Endpoint Name Supports Network Configuration

https://mpifileutils.readthedocs.io/en/v0.10.1/ddup.1.html
https://www.globus.org/
https://arc.umich.edu/globus/#document-4

umich#hits-research Adv. Genomics Core / HITS 1 x 10 Gbps
NAS

Sharing -- Globus

Globus supports international data sharing. This does not require administrator intervention and
supports fine grained user and group permissions based on email address or globus username.
This functionality is similar to sharing folders in Google Drive where the recipient will be notified
by email that a folder is now shared with them.

TODO Video Tutorial

Other Options

RClone

RClone is supported on all platforms and supports all the major cloud storage providers. This
can often allow bridging data from services such as Google Drive and Box.

On ARC-TS Systems:
module load rclone
https://arc-ts.umich.edu/flux/software/rclone/setup-box/

On fast networks and storage increase number of parallel transfers:
rclone copy —--transfers=32

Storage Solutions

Locker

Locker is considered ‘warm’ archive. It's an all disk system capable of 1GByte/s often called
near-line. Performance is not suitable for use with large scale computation or small file
operations.

https://docs.globus.org/how-to/share-files/
http://rclone.org/
https://arc-ts.umich.edu/locker/

Common use cases for Locker are:
e Capturing new data from devices that will not be acted on immediately
e “Low” performance lab share
e Holding data that will be quickly moved to another location

Locker provides 1 Million file objects / 1 TByte of provisioned capacity. Minimum allocation 10
TByte

Data Den

Data Den provides a massive scale ‘cold’ archive. It's a disk cached - tape system providing
offline encrypted copies of data. Data Den is capable of ingesting data at 1GB/s, but recall
performance is highly dependent on file size if data is not in cache.

Common use cases for Data Den are:
e Maintaining secondary copies of data of high value
e Maintaining data for long term preservation or publication
e Sharing data sets

Data Den access is only via Globus Transfer and Sharing

Data Den provides 10,000 File objects / 1 TByte of provisioned capacity
Data Den requires 99%+ of data to be in files > 100 MBytes Each
Minimizing the number of files is key for performance

Scanning Existing Data for Expected Archive Behavior

The tool archivescan produces a report of how much data is over 100MB or under. The goal
for Data Den is that the total data volume (Bytes) is 98-99% on tape, rather than on disk. Active
Archive relaxes this requirement.

Archivescan on ARC Systems

module load archivetar
cd <folder>

archivescan

————— Results —------
Data Den Candidates:
Files: 125

Size: 206.2GiB

Cache (Locker) Candidates:
Files: 6510

Size: 8.2G1iB

Total Time 0.97 Seconds
Fraction Offline: 96.17703 %

Archivescan on non-ARC Systems

Requires Python3

curl -0 https://raw.githubusercontent.com/brockpalen/archivetar/master/bin/archivescan

python3 ./archivescan

Data Den Optimal File Size

Data Den performance is heavily impacted by the number of files as the tape drives have to
seek which can take up to 50 seconds per file. Thus most users will use tar, or other tool to
bundle many files together into a single archive before uploading to Data Den.

You may be tempted to create a single many TeraByte file. This is also sub optimal as it does
not allow the system to use parallel drives to recall multiple files. Single file will only ever use 1
drive and a single 12 TByte tape may take up to 10 hours to read. Thus 12 1 TeraByte files will
come back much faster.

Thus you want a file large enough that the 50 second seek time per-file is small compared to
total time recalling the data, but not so large you are limited to a single drive only for all your
data.

The general rules of file sizes are:
e Default Minimum 100 MByte?
e Optimal 20 GByte - 500 GByte (100G Recommended)
e Maximum 10 TByte

2 The value can be tuned with consultation about appropriate use and expectations

https://raw.githubusercontent.com/brockpalen/archivetar/master/bin/archivescan

Migration Performance by File Size (LTO7)

8 Drives (2N4DB8T)
6 Drives (2N3D6T)
4 Drives (1N4DAT)

»- 3 Drives (1N3D3T) |

SEC)

2 Drives (1N2D2T)

E (MB/

RATE

SFER R/

ik
RAN

FILE SIZE (MEGA BYTES)

Data Den currently has 9 LTO8 Drives/Site

Advanced Data Den + Locker Active Archive

For the largest volumes of data (100 TByte minimum) it is possible to provision dedicated disk
space in Locker with Data Den and provide support for small files along with large files for
Active Archive This allows Data Den to be used as an active mounted filesystem via NFS or
CIFS for direct data capture and manipulation. This can simplify data management for extreme
scale projects with disk performance for recent data, and Data Den costs for capacity.

100 TByte minimum volume size

See: Advanced Uses of Locker & Data Den
See: Cost Estimator

https://drive.google.com/file/d/1b0s4MNlVhWz4FIX1deGaLLA_Oz9MRxDE/view?usp=sharing
https://docs.google.com/spreadsheets/d/1yvCOHeL8l-y6q425UEMCvkuAn78-MpIfsgTIVwCD_8Q/edit#gid=0

Data iny

M Frequently accessed
I data stays active
ws in Locker.

Once Locker fills,

c oldest files over
100MB migrate
to Data Den.

LOCKER

Accessed files move
back to Locker
automatically.

DATA DEN

Google Drive / DropBox etc.

Highly recommend only using for small data volumes (< 1 TByte). While possible these
services are not designed for extreme scale.

For larger data volume transfers or Linux clients use RClone, to avoid issues with large transfers
with browsers or automated transfers.

http://rclone.org/

HDFS / Spark Hadoop

Specific to HDFS on ThunderX.

Importing/Exporting data in Parallel

Standard hdfs -get and -put has performance limitations. You can work around this using
parallel to upload/download multiple files at a time. Speeds up to 1GB/s are possible.

Upload all files in the current directory that starts with decahose-2018 to hdfs folder
decahose
1ls decahose-2018* | parallel --progress hdfs dfs -put {}
decahose/

Download all files from hdfs folder results to local directory
hdfs dfs -1s -C results | parallel --progress hdfs dfs -get {}

Native Compressed Data

Most tools in the big data ecosystem can natively read compressed data. Thus you do not need
to expand data before uploading and most tools can open/read without any extra action. The
underlying HDFS libraries wll auto detect and decompress the data dynamically. Most
compression types are supported, and special considerations should be made for uploading
extremely large files due to not all compression formats being splittable.

Read compressed json into data frame:
reddit = sglContext.read.json("reddit full*.json.gz")

A1*B1 16bytes : 1 Flop, 3hz, * 2 =6 Gflops

https://arc-ts.umich.edu/cavium/
https://www.gnu.org/software/parallel/parallel_tutorial.html
https://www.dummies.com/programming/big-data/hadoop/compressing-data-in-hadoop/

Advanced Tools

Data Den Active Archive

Active Archive sits between active storage (defined as storage with responsive latency) and cold
storage such as default Data Den. Specifically, it allows:

1. Automating data lifecycle through cache sizing (Locker Size)

2. Separating the cost and behavior of small files from large files in a single export

3. NFS or SMB access to Data Den managed storage

4. Ability to manage what data is currently cached though archivescan

Technical Overview

Data in?:

Frequently accessed

=
el data stays active
ws in Locker.

Once Locker fills,
e oldest files over
100MB migrate

LOCKER

to Data Den.
pd
Accessed files move U'DJ
back to Locker
automatically. IS
<
()

Active Archive combines two ARC services
Data Den deep archive (extremely low cost
storage for large files > 100MB) and Locker
(nearline storage system). A single
filesystem tree is presented to the user but
the actual data of each file could reside in
ether system depending on the size of the
file. This threshold defaults to 100MB and
can be modified but unlikely to be lowered.

1. Files < 100MB never leave Locker
disk storage, remaining responsive

2. Most recently accessed files >
100MB, reside on Locker until Locker quota.
Additional data resides on Data Den until
first access.

Once a file > 100MB is accessed that is only
on Data Den the command (eg cp, globus,
R) will block like hung storage mount until

the entire file is copied from Data Den back to Locker. Further access to that file will be at
Locker's performance until it is pushed out by newer data.

Archivescan is a tool for archive users

Archivescan (part of the Archivetar module) provides several additional functions to Active

Archive Users:

Size Cache Requirements for migrated data

cd <folder>

archivescan

Results —--—----
Data Den Candidates:
24393

45.5T1iB

Files:
Size:

(Locker) Candidates:
10324244

2.1TiB

Cache
Files:

Size:

Scan Time 3185.097 Seconds

Fraction Offline: 95.6 %

This example would require at least

e 11TB of Locker to hold the 10+ Million
small files. (minimum recommended is
20TB)

e They will only consume 2.1TB of the
11TB of space.

e The remaining space will cache up to
9TB of the 45TB of data on Data Den.

List files on Locker Cache or Only on Data Den

cd <folder>
module load archivetar
archivescan --print-cached

archivescan --print-offline

Add --quiet to the above when being used in scripts to avoid extra messages.

Recall a Folder to Disk Cache

Note if there is not sufficient cache other cached files will be pushed off to make space. If the
amount of data being recalled is more than the total cache size, the last file recalled will be

pushed off again creating undesired results.

cd <folder>
archivescan --recall

Active Archive Policies
1. Minimum 20TB Cache Space

2. 1 Million Inodes (file & folder count quota) for each 1TB of Locker Cache

3. Volumes with excessive tape drive consumption will be required to adjust usage or
modify cache settings
4. The 100TB of Data Den capacity from UMRCP can apply to the Data Den portion of an
Active Archive Deployment
5. Sparse files should be avoided. These are uncommon.
All Active Archive Polices

Example Active Archive Use Cases

1. Primary data source which most recent data is significantly more active. Eg
observational data, genomics etc.
a. Set the Locker/Cache size to match active data volume
b. Set Data Den size for total data
2. Reduce/eliminate the need for tar/zip for most users
a. Set Locker/Cache size to match file counts and data volume < 100MB
b. Set Data Den size to match data volume files > 100MB

Automatic Migration with Thresholds
[high threshold 80%, low threshold 60%)]

]
8

ERERE

o 8B & 8

TIME

Used capacity as percentage of total
storage capacity
8

= Total Storage = Online Storage

Active Archive Cost Calculator

Does not include 100TB of free Data Den, Cost Calculator.

Notes for IT Staff

Active Archive exports show up as replicated Locker volumes. Commands like df and du will
show twice the space consumed than the actual file sizes reported by 1s -1 or expected by the
user. Eg a 20TB volume will appear as 40TB.

https://en.wikipedia.org/wiki/Sparse_file
https://docs.google.com/document/d/16cxhuBKhKiLrTFPXBGGH0En-O0GAZNLsFpfxilN-uLQ/edit#heading=h.14fsykv78a9
https://docs.google.com/spreadsheets/d/1yvCOHeL8l-y6q425UEMCvkuAn78-MpIfsgTIVwCD_8Q/edit#gid=0

When the cache/Locker space is full in df output you will get an out-of-space message even if
there is a remaining Data Den quota.

Files only on Data Den/tape (migrated state) du will report their size as 2MB while 1s -1 will
show the appropriate size. To calculate the size of files on tape and on cache use du
--apparent-size this also correctly accounts for replication and does not double report. Not
using that option reports actual Locker disk blocks consumed including replication.

archivescan uses the sparse file nature of data on data den to infer what is offline when
using --current-state or -—recall

Data Den evaluates data not accessed for 24 hours every midnight. Files are then copied to
tape (but not removed from Locker Cache). Locker cache can only be freed for new data by
data that we premigrated through this process. Thus it may take as long as 48 hours to get data
moved to Data Den. Tickets are required to migrate data early, e.g. for large one-time data
imports.

Using find to find files likely not on tape but could be.
find . -type f -size +100M -size -10000G -amin +60 -printf "%$S\t%p\n"
| gawk '$1 > 1.0 {for (i=2; 1i<NF; i++) printf $i " "; print SNF}'

Find all files that are only on tape
IFS=$'\n' find . -type f -printf "$S\t%p\n" | gawk '$1 < 1.0 {for
(i=2; i<NF; i++) printf $i "™ "; print SNF}'

Grand Unified File Index

Grand Unified File Index (GUFI) (gooo-phi) provides a high-performance filesystem scanner with
the intention of providing user-friendly search. Built on top of SQL, it can be used as a
high-performance metadata query. Because GUFI mirrors the filesystem folder structure it is
possible to scan once and run multiple reports on different paths.

ARC Provided GUFI Container and Reports

A pre-built container with several reports is provided by ARC and usable on any system with
Singularity.

Scanning a Filesystem / Build Index

The container sets the GUFI index to /tmp/GUFI and is only required for the gufi *
commands and not by the SQL-based reports.

https://github.com/mar-file-system/GUFI
https://github.com/umich-arc/gufi-archive

module load singularity
singularity pull --arch amdé64 library://brockp/gufi/gufi:master
singularity exec gufi master.sif gufi dir2index -n <#threads> <inputdir> /tmp/GUFI

ARC Reports

See https://qgithub.com/umich-arc/gufi-archive/blob/master/SCRIPTS.md

https://github.com/umich-arc/gufi-archive/blob/master/SCRIPTS.md

	Brock's Guide to Data Archiving
	Finding files on Linux & Mac with find
	Basic Find
	Note on greater than, less than and equal
	Using find to run a command on each matched file

	Compression
	Linux / Mac Compression - gzip, bzip2, xz, lz4
	Parallel Versions of gzip, bzip2, lzma/xz, lz4

	Zip Archive/Compression Tool (Windows)
	Tar Archive Tool (Linux, Mac)
	Basics - Create Archive
	Basics - Extract Compressed Archive
	Advanced Tar
	Tar with Parallel Compressors
	Saving an Index of Files in an Archive
	Expand tar file to a Different Location
	Extracting Specific Files from Tar

	Tar and Archives Bigger than Source Data (Sparse Files)

	Archivetar - All In One Archive Tool
	Great Lakes Three Line Archive to Data Den
	Archivetar Examples
	Create Backup of all Files, Compress with Gzip Leave Originals
	Prep Directory for Data Den
	Auto Upload to Data Den
	Archive Full or Close to Full folders

	Unarchive Examples
	Unarchive
	Unarchive over top of existing data skipping files that already exist

	Multiple tar/compressors in parallel -- GNU Parallel
	Parallel File Utilities, cp, rm, find, chmod - mpiFileUtils
	Basic find, copy, delete (dfind, dcp, drm)
	Finding Duplicate Files

	Data Transfer & Sharing
	Transfer -- Globus
	Campus Globus Endpoints

	Sharing -- Globus
	Other Options
	RClone

	Storage Solutions
	Locker
	Data Den
	Scanning Existing Data for Expected Archive Behavior
	Archivescan on ARC Systems
	Archivescan on non-ARC Systems

	Data Den Optimal File Size

	Advanced Data Den + Locker Active Archive
	Google Drive / DropBox etc.

	HDFS / Spark Hadoop
	Importing/Exporting data in Parallel
	Native Compressed Data

	Advanced Tools
	Data Den Active Archive
	Technical Overview
	Archivescan is a tool for archive users
	Size Cache Requirements for migrated data
	List files on Locker Cache or Only on Data Den
	Recall a Folder to Disk Cache

	Active Archive Policies
	Example Active Archive Use Cases
	Active Archive Cost Calculator
	Notes for IT Staff

	Grand Unified File Index
	ARC Provided GUFI Container and Reports
	Scanning a Filesystem / Build Index
	ARC Reports

