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Objectives & Audience 
 
This book is intended for a graduate or undergraduate course or self-study.  The reader will 
learn to design and optimize microprocessors and use them in a system-on-chip, applying 
contemporary design and verification tools.  Much of the book describes detailed designs and 
tradeoffs for the functional blocks in and around a processor. There is presently no textbook on 
the market that describes microarchitecture in sufficient detail to fully implement a non-toy 
system. The reader should have had at least a first course in digital design and computer 
architecture, and experience programming in C in a Linux environment.   
 
The book is associated with an open-source RISC-V microprocessor and system-on-chip project 
including SystemVerilog files, test suites, benchmarking, peripherals, Linux boot, and a design 
flow for an FPGA board and for the Skywater open-source fabrication process, targeting a 45 
nm process. 
 
Table of Contents 
 

1.​ Introduction [DH] 
a.​ Overview 
b.​ A Brief History 
c.​ RISC-V Architecture [SH - Dec 1, 2022 or summer?] 

i.​ RV32/64/128 
ii.​ Integer Core Instructions 
iii.​ Extensions 

1.​ Single/Double Precision FP 
2.​ MUL 
3.​ Compressed 
4.​ Atomic 

iv.​ Privileged Operations 
*** include lots of quotes from RISC-V reader about simplicity 
*** include lessons from RISC-V reader including bits in address space, 
importance of lots of registers, no need for ARM shifter or condition codes, avoid 
branch delay slot, value of compressed instructions & sharing semantics exactly, 
placing multiply result in regular register, ability to move between integer and fp, 
etc. (look through book again) 
*** maybe compare with IA, ARM as done in RISC-V reader? 



 

d.​ Simplified Single Cycle Processor Example [*** can we adapt anything from 
Borje’s class at Berkeley?, see emails of June 20ish, 2021.  Or single cycle 
from DDCA?] 

i.​ ISA 
1.​ Mention RV32/64, extensions 

ii.​ Microarchitecture 
iii.​ Verilog 
iv.​ Test Program 
v.​ FPGA Implementation 

vi.​ System-on-chip Implementation 
1.​ Performance, Power, Area (define FO4 delays for cycle times) 

 
e.​ Wally Processor 

i.​ Configurable 
ii.​ Block Diagram 
iii.​ Top-Level Interface 
iv.​ Verification 

f.​ Justification for both commercial and open-source tools and their 
implementations using System on Chip and FPGA design 

i.​ Moore’s Law 
1.​ Need for accelerators 

ii.​ Abandonment of ITRS 
iii.​ Movement towards RISC-V and open-access design ecosystems 
iv.​ Need for new technologies and better collaboration between technologies 

(?)  
v.​ Create a new initiative that connects software and hardware foundations. 

vi.​ Design enablement for emerging technologies as well as education and 
workforce development. 

vii.​ Goal of open RISC-V processor that researchers can use to benchmark 
designs, fold new and better execution units into the processor 

 
Part 1: Design Practices  

2.​ Tool Flow [DH] 
i.​ Platform requirements 

1.​ Which version of Linux to use? (RedHat 8 / Rocky 8) 
2.​ RedHat8 is $27 per FTE for site subscription - academic pricing 

but no support. $1000 per year for virtualization). 
ii.​ riscv-wally Quick Start 

1.​ Check out repository 
2.​ Install tools 
3.​ Build test cases 
4.​ Simulate Verilog 
5.​ Boot Linux in QEMU and ModelSim 

iii.​ Hitchhiker's Guide to Linux [ move to appendix] 



 

1.​ x2go / some VNC? 
2.​ Getting Around 

a.​ ls, cd, mv, cp, mkdir, rm, rm -rf *, chmod 
3.​ Handy Commands 

a.​ grep 
b.​ find 

4.​ Editing Files ? 
a.​ Visual Studio Code 

5.​ Working with Git Repositories 
iv.​ Editing Files 

1.​ Visual Studio Code 
v.​ Compiling, Assembling, and Disassembling Programs 

1.​ Compiling, Assembling, and Linking 
a.​ C 
b.​ Assembly 

i.​ Register conventions (table B.4 from DDCA) 
ii.​ Pseudoinstructions 
iii.​ Assembler Directives 

c.​ Object Files (.elf) 
d.​ Linker (see RISC-V Reader) 
e.​ Compiler Flags 

2.​ Disassembling 
a.​ objdump/binutils 
b.​ debug file (see riscv-arch-test) 

vi.​ Simulating and Debugging Programs 
1.​ Introduction to Simulation 
2.​ ISA Simulators 

a.​ Spike - currently being used (10/20/21) 
b.​ QEMU 
c.​ Sail 
d.​ riscvOVPsimPlus 
e.​ Whisper? 

3.​ Debuggers 
Simulation and Debug (how to run in Spike and/or QEMU) 

(not doing: OVPSim (because need to download every 30 days), 
Sail - need to evaluate - listed by RISC-V, may need to build to run 
RISC-V tests - David will look into) 

a.​ gdb (integration through VisualStudio) 
b.​ ddd (?) 

vii.​ Execution Environment [DH: 12/31/21] 
viii.​ *** see RISC-V spec 

b.​ Bare Metal, OS, Hypervisors 
c.​ Memory map: VM layout with text, data, heap, stack, kernel for 

Linux earlier 



 

d.​ Privileged operation 
i.​ *** writing exception handlers/privilege change in C and 

Assembly 
e.​ Compiling and Running Code for Wally Verilog Simulation *** 

maye in Verification? 
i.​ Imperas directories 
ii.​ Assembly and C 
iii.​ Startup Code 
iv.​ checking code 

​ *** reference trap handler, supporting regular traps, interrupts 
​ *** how to terminate a program in sims: ecall with gp=1? 
​ *** how to get sims to work that have ecalls in them 

 
3.​ HDL Design Practices [DH: 10/31/21] 

i.​ *** say Verilog is shorthand for SystemVerilog 
b.​ Signal Naming 
c.​ Configurable Designs 
d.​ Synthesizable Designs 
e.​ SystemVerilog Simulation 

f.​ Verilator 
i.​ Lint 

g.​ ModelSim 
h.​ https://riscv.org/wp-content/uploads/2015/01/riscv-software-stack-bootca

mp-jan2015.pdf 
F. Wally Verification 

i.​ Lint 
j.​ Test Suites 

i.​ riscv-arch-test 
ii.​ Imperas 
iii.​ wally-riscv-arch-test 
iv.​ Linux 

k.​ Regression 
H. Chip Implementation Quick Start 

l.​ FPGA Flow 
m.​ Open Source SoC Flow 

i.​ Skywater 130 nm 
ii.​ Yosys/OpenRoad 

n.​ Commercial SoC Flow 
i.​ MUSE/TSMC 28 nm 
ii.​ Synopsys Design Compiler 
iii.​ Cadence Innovus​  

iv.​ PPA 
 

Part 2: RISC-V Microarchitecture  

https://riscv.org/wp-content/uploads/2015/01/riscv-software-stack-bootcamp-jan2015.pdf
https://riscv.org/wp-content/uploads/2015/01/riscv-software-stack-bootcamp-jan2015.pdf


 

​ *** add benchmarks to each section to show improvements from new features 
4.​ RISC-V Pipelined Microarchitecture [DH: 12/31/21 ] 

a.​ Hart 
i.​ Integer Execution Unit 
ii.​ Instruction Fetch Unit 

1.​ how to deal with FSM that handles cache hits/misses, page table 
walking 

2.​ Dealing with two fetches on line wrap / spill 
iii.​ Load/Store Unit (only TIM and SWR/SWW, others grayed out) 
iv.​ IFU 
v.​ Other units (to discuss later) 

vi.​ Stalls and Flushes 
1.​ Should CSR accesses flush rather than stall? 

b.​ Uncore 
5.​ Privileged Operations [DH 12/31/21] 
6.​ AHB Lite Interface [Ross & DH 1/7/21] 

a.​ Support fast cache line fills - bursts? 
b.​ Adding bus in exclusion then in parallel with dtim/irom. 

7.​ Caches [DH Intro, Ross write sections on testing and implementation target 
Mid-November 

a.​ Principles 
b.​ RISC-V Practices 

i.​ fence.i  
c.​ Test Plan 

i.​ TBD (maybe summer student) 
d.​ Wally Implementation 

8.​ Memory Management Unit [DH] July21 
a.​ Discuss changes of having MMU 

9.​ LSU [RT] 
a.​ MMU in diagram but grayed out 

10.​IFU [RT] 
a.​ Principles: Branch Prediction 

i.​ RISC-V branch prediction: resolved in execute, not decode 
b.​ Test Plan 

i.​ Specific to verifying branch prediction 
c.​ Wally Implementation 

i.​ Integrate cache 
ii.​ Integrate MMU 
iii.​ Integrate Branch Precition 
iv.​ compressed grayed out 

11.​Extensions: Compressed Instructions [DH 1/15/22] 
a.​ RISC-V Principles 

i.​ Uncompression 
ii.​ Spills 



 

iii.​ Interaction with cache 
b.​ Test plan 

i.​ spills 
c.​ Wally Implementation 

12.​Extensions: Multiplication and Division DH 10/31/21] Aug21 
a.​ Multiplication 

i.​ Carry-save addition 
b.​ Division 

i.​ By subtract and shift in non-redundant form, replicated for 2 bits per cycle 
c.​ Forward reference to Floating Point Division chapter for integer SRT division 

13.​Extensions: Floating Point [DH/JS late October James draft clean]  
a.​ Floating Point Representation 
b.​ Addition/Subtraction 
c.​ Multiplication 
d.​ FMA 
e.​ Division and Square Root by Digit Recurrence 
f.​ Division and Square Root by Iterative Approximation 
g.​ Other Operations 
h.​ Softfloat Test Suite (PARANOIA) 

14.​Extensions: Atomic *** 
a.​ LR/SC 
b.​ AMO operations 
c.​ using atomic operations for synchronization: locks, semaphores 

i.​ See Linux book Ch 1 for summary 
ii.​ Look at how Linux uses this 
iii.​ Lotteries 

15.​Peripherals [DH Spring] 
i.​ GPIO 
ii.​ CLINT 
iii.​ PLIC 
iv.​ UART 
v.​ SD Card [Ross] 

vi.​ SPI for 2nd edition? 
vii.​  

16.​High Performance Microarchitecture [SH: 12/1/21 or summer] Adapt from Hennessy & 
Patterson? 

●​ Introduction of each processor (show figures & tables plus few paragraph 
overview) 

a.​ Superscalar  
b.​ Out-of-Order - talk about in more detail. 
c.​ SIMD 
d.​ Vector 

 
Later: 



 

e.​ Survey of Microarchitectures [SH, DH: ] 
i.​ Various SiFive 

1.​ P650  
ii.​ SweRV 
iii.​ Other RISC-V 

Andes 
Alibaba 
https://github.com/T-head-Semi?spm=a2cl5.14290816.0.0.d3ef1ae6lip5d
k 
 
survey of RISC-V implementations? 

 
Part 3: Implementation 

17.​Benchmarking [DH, RT] 
a.​ CoreMark  

i.​ https://docs.google.com/document/d/1ZQA4TA-P2a-yO-jHqiQ7Lo-i-D80jk
AEoHTtcHbdHZI/edit 

ii.​  (get steps from Abraham) 
1.​ How to download 
2.​ What has to change 
3.​ How to compile & run it 

cd tests/riscv-coremark/coremark 
make (builds and runs) 
cd .. 
./transferobjdump.sh 
cd ../../wally-pipelined/regression 
vsim -c -do wally-coremark.do 
Notes: Western Digital says IPC is about 
1.03 
Their CoreMark is good because of 
compiler flags. 

b.​ Embench - later - Skylar may work on this 
1.​ How to download 
2.​ What has to change 
3.​ How to compile & run it 
4.​ Look at  
5.​ https://riscv.org/wp-content/uploads/2019/12/12.10-12.50a-Code-S

ize-of-RISC-V-versus-ARM-using-the-Embench™-0.5-Benchmark-
Suite-What-is-the-Cost-of-ISA-Simplicity.pdf 

6.​ https://github.com/embench/embench-iot-results/blob/master/detai
ls/eh2-rv32imc-gcc-10.2-o2.mediawiki 

7.​  
8.​  

c.​ Optimizations 

https://github.com/T-head-Semi?spm=a2cl5.14290816.0.0.d3ef1ae6lip5dk
https://github.com/T-head-Semi?spm=a2cl5.14290816.0.0.d3ef1ae6lip5dk
https://docs.google.com/document/d/1ZQA4TA-P2a-yO-jHqiQ7Lo-i-D80jkAEoHTtcHbdHZI/edit
https://docs.google.com/document/d/1ZQA4TA-P2a-yO-jHqiQ7Lo-i-D80jkAEoHTtcHbdHZI/edit
https://riscv.org/wp-content/uploads/2019/12/12.10-12.50a-Code-Size-of-RISC-V-versus-ARM-using-the-Embench%E2%84%A2-0.5-Benchmark-Suite-What-is-the-Cost-of-ISA-Simplicity.pdf
https://riscv.org/wp-content/uploads/2019/12/12.10-12.50a-Code-Size-of-RISC-V-versus-ARM-using-the-Embench%E2%84%A2-0.5-Benchmark-Suite-What-is-the-Cost-of-ISA-Simplicity.pdf
https://riscv.org/wp-content/uploads/2019/12/12.10-12.50a-Code-Size-of-RISC-V-versus-ARM-using-the-Embench%E2%84%A2-0.5-Benchmark-Suite-What-is-the-Cost-of-ISA-Simplicity.pdf
https://github.com/embench/embench-iot-results/blob/master/details/eh2-rv32imc-gcc-10.2-o2.mediawiki
https://github.com/embench/embench-iot-results/blob/master/details/eh2-rv32imc-gcc-10.2-o2.mediawiki


 

18.​Linux Boot [KP, NB] 
a.​ https://archive.fosdem.org/2020/schedule/event/riscv_bootflow/attachments/slide

s/4205/export/events/attachments/riscv_bootflow/slides/4205/FOSDEM_2020_Ati
sh.pdf 

b.​ Boot Loader 
c.​ Device Tree 
d.​ Virtual Memory 
e.​ Privilege Modes 
f.​ Peripherals 

19.​FPGA Implementation [JS/SH/KP] 
a.​ Motivations 
b.​ FPGA Design Flow 
c.​ Bus Interface 
d.​ External Memories 
e.​ Optimization 

20.​CMOS for Microarchitects [DH] 
a.​ CMOS Transistors 
b.​ CMOS Layout 
c.​ Example: Skywater 45 (or 22?) nm Process 
d.​ Cell Design 
e.​ Floorplanning 
f.​ Performance 

i.​ RC Delay Model 
ii.​ Logical Effort 
iii.​ Wire Delay 
iv.​ Repeaters 

g.​ Power 
i.​ Dynamic Power 
ii.​ Static Power 

h.​ Area 
i.​ Building Blocks 
j.​ Memories 
k.​ Phase Locked Loops 
l.​ Scan Registers 
m.​ System-on-Chip Design 

i.​ Moore’s Law 
ii.​ Scaling 
iii.​ Wires 
iv.​ CAD Tools 
v.​ Economics 

1.​ [***maybe get estimate from David Garrett about costs for 
startup] 

vi.​ IP Reuse 
vii.​ Dark Silicon (IEEE UDP) 



 

21.​CMOS Implementation [TE] 
a.​ Motivations 
b.​ CMOS Design Flow 

i.​ Standard cells 
ii.​ Memories 
iii.​ I/O 

c.​ Low Power Design 
d.​ Design for Test 
e.​ Power, Performance, and Area Optimization 

i.​ See report from Shreya nd Kip in slack synth channel Dec 27 2021 
f.​ Low Power Methodology 
g.​ Packaging 
h.​ Commercial RISC-V Implementations 

i.​ SiFive 
ii.​ SWERVE 

 
Second Edition 

22.​RISC-V Superscalar Microarchitecture [DH with BB] [2nd edition?] 
23.​RISC-V Out-Of-Order Microarchitecture [Ross?] [2nd edition?] 
24.​RISC-V Threaded Microarchitecture [JS] [2nd edition?] 
25.​More Bus Interfaces [SH, JS] [2nd edition?] 

a.​ APB 
b.​ AXI 
c.​ Wishbone 
d.​ Network on Chip 

26.​Debug Interface [2nd edition] 
27.​Multicore [SH 2nd Edition]  

a.​ Cache Coherence 
b.​ Synchronization: Atomic Instructions 
c.​ Bus Arbitration 

28.​SIMD [2nd edition] 
29.​Vector [2nd edition] 
30.​Bit Manipulation [2nd edition] 
31.​Crypto (K) [2nd edition] 
32.​Security [2nd edition] 

a.​ Hardware features for security 
b.​ Side channel attacks 

Peripherals 
i.​ SPI 
ii.​ PWM? 

33.​Silicon Debug [?] 
 
 
Supplements 



 

​ Tool installation: gcc, ovp, lint (verilator), modelsim, Synopsys & Cadence 
​ ​ Imperas tests, git repo 

 
OVP: Regarding riscvOVPsimPlus.exe, go to and choose version 

 ​ https://www.ovpworld.org/library/wikka.php?wakka=riscvOVPsimPlus  
​ Or switch to free simulator 
 
Other Notes 
 
The authors would like the book to be available in printed format and in permanent (non-rental) 
ebook format at reasonable prices for students. 
 
The length is still TBD but expected to be 400-800 pages.  Target delivery September 2022. 
 
An external website and open-source tools will be provided to accompany the text. 
 
We plan to produce the manuscript in Google Docs and produce most figures in Visio and most 
equations in MathType. 
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Writing Notes 
 
Look at https://inst.eecs.berkeley.edu/~cs152/sp21/ for ideas, lots of images that would make 
good sidebars. 
 
 

https://inst.eecs.berkeley.edu/~cs152/sp21/

