

RISC-V Microprocessor System-On-Chip Design
Book Proposal

David Harris, James Stine, Sarah Harris
with contributions from Teo Ene, Ross Thompson, Kaveh Pezeshki, Noah Boorstin, Katherine

Parry

Objectives & Audience

This book is intended for a graduate or undergraduate course or self-study. The reader will
learn to design and optimize microprocessors and use them in a system-on-chip, applying
contemporary design and verification tools. Much of the book describes detailed designs and
tradeoffs for the functional blocks in and around a processor. There is presently no textbook on
the market that describes microarchitecture in sufficient detail to fully implement a non-toy
system. The reader should have had at least a first course in digital design and computer
architecture, and experience programming in C in a Linux environment.

The book is associated with an open-source RISC-V microprocessor and system-on-chip project
including SystemVerilog files, test suites, benchmarking, peripherals, Linux boot, and a design
flow for an FPGA board and for the Skywater open-source fabrication process, targeting a 45
nm process.

Table of Contents

1.​ Introduction [DH]
a.​ Overview
b.​ A Brief History
c.​ RISC-V Architecture [SH - Dec 1, 2022 or summer?]

i.​ RV32/64/128
ii.​ Integer Core Instructions
iii.​ Extensions

1.​ Single/Double Precision FP
2.​ MUL
3.​ Compressed
4.​ Atomic

iv.​ Privileged Operations
*** include lots of quotes from RISC-V reader about simplicity
*** include lessons from RISC-V reader including bits in address space,
importance of lots of registers, no need for ARM shifter or condition codes, avoid
branch delay slot, value of compressed instructions & sharing semantics exactly,
placing multiply result in regular register, ability to move between integer and fp,
etc. (look through book again)
*** maybe compare with IA, ARM as done in RISC-V reader?

d.​ Simplified Single Cycle Processor Example [*** can we adapt anything from
Borje’s class at Berkeley?, see emails of June 20ish, 2021. Or single cycle
from DDCA?]

i.​ ISA
1.​ Mention RV32/64, extensions

ii.​ Microarchitecture
iii.​ Verilog
iv.​ Test Program
v.​ FPGA Implementation

vi.​ System-on-chip Implementation
1.​ Performance, Power, Area (define FO4 delays for cycle times)

e.​ Wally Processor

i.​ Configurable
ii.​ Block Diagram
iii.​ Top-Level Interface
iv.​ Verification

f.​ Justification for both commercial and open-source tools and their
implementations using System on Chip and FPGA design

i.​ Moore’s Law
1.​ Need for accelerators

ii.​ Abandonment of ITRS
iii.​ Movement towards RISC-V and open-access design ecosystems
iv.​ Need for new technologies and better collaboration between technologies

(?)
v.​ Create a new initiative that connects software and hardware foundations.

vi.​ Design enablement for emerging technologies as well as education and
workforce development.

vii.​ Goal of open RISC-V processor that researchers can use to benchmark
designs, fold new and better execution units into the processor

Part 1: Design Practices

2.​ Tool Flow [DH]
i.​ Platform requirements

1.​ Which version of Linux to use? (RedHat 8 / Rocky 8)
2.​ RedHat8 is $27 per FTE for site subscription - academic pricing

but no support. $1000 per year for virtualization).
ii.​ riscv-wally Quick Start

1.​ Check out repository
2.​ Install tools
3.​ Build test cases
4.​ Simulate Verilog
5.​ Boot Linux in QEMU and ModelSim

iii.​ Hitchhiker's Guide to Linux [move to appendix]

1.​ x2go / some VNC?
2.​ Getting Around

a.​ ls, cd, mv, cp, mkdir, rm, rm -rf *, chmod
3.​ Handy Commands

a.​ grep
b.​ find

4.​ Editing Files ?
a.​ Visual Studio Code

5.​ Working with Git Repositories
iv.​ Editing Files

1.​ Visual Studio Code
v.​ Compiling, Assembling, and Disassembling Programs

1.​ Compiling, Assembling, and Linking
a.​ C
b.​ Assembly

i.​ Register conventions (table B.4 from DDCA)
ii.​ Pseudoinstructions
iii.​ Assembler Directives

c.​ Object Files (.elf)
d.​ Linker (see RISC-V Reader)
e.​ Compiler Flags

2.​ Disassembling
a.​ objdump/binutils
b.​ debug file (see riscv-arch-test)

vi.​ Simulating and Debugging Programs
1.​ Introduction to Simulation
2.​ ISA Simulators

a.​ Spike - currently being used (10/20/21)
b.​ QEMU
c.​ Sail
d.​ riscvOVPsimPlus
e.​ Whisper?

3.​ Debuggers
Simulation and Debug (how to run in Spike and/or QEMU)

(not doing: OVPSim (because need to download every 30 days),
Sail - need to evaluate - listed by RISC-V, may need to build to run
RISC-V tests - David will look into)

a.​ gdb (integration through VisualStudio)
b.​ ddd (?)

vii.​ Execution Environment [DH: 12/31/21]
viii.​ *** see RISC-V spec

b.​ Bare Metal, OS, Hypervisors
c.​ Memory map: VM layout with text, data, heap, stack, kernel for

Linux earlier

d.​ Privileged operation
i.​ *** writing exception handlers/privilege change in C and

Assembly
e.​ Compiling and Running Code for Wally Verilog Simulation ***

maye in Verification?
i.​ Imperas directories
ii.​ Assembly and C
iii.​ Startup Code
iv.​ checking code

​ *** reference trap handler, supporting regular traps, interrupts
​ *** how to terminate a program in sims: ecall with gp=1?
​ *** how to get sims to work that have ecalls in them

3.​ HDL Design Practices [DH: 10/31/21]

i.​ *** say Verilog is shorthand for SystemVerilog
b.​ Signal Naming
c.​ Configurable Designs
d.​ Synthesizable Designs
e.​ SystemVerilog Simulation

f.​ Verilator
i.​ Lint

g.​ ModelSim
h.​ https://riscv.org/wp-content/uploads/2015/01/riscv-software-stack-bootca

mp-jan2015.pdf
F. Wally Verification

i.​ Lint
j.​ Test Suites

i.​ riscv-arch-test
ii.​ Imperas
iii.​ wally-riscv-arch-test
iv.​ Linux

k.​ Regression
H. Chip Implementation Quick Start

l.​ FPGA Flow
m.​ Open Source SoC Flow

i.​ Skywater 130 nm
ii.​ Yosys/OpenRoad

n.​ Commercial SoC Flow
i.​ MUSE/TSMC 28 nm
ii.​ Synopsys Design Compiler
iii.​ Cadence Innovus​

iv.​ PPA

Part 2: RISC-V Microarchitecture

https://riscv.org/wp-content/uploads/2015/01/riscv-software-stack-bootcamp-jan2015.pdf
https://riscv.org/wp-content/uploads/2015/01/riscv-software-stack-bootcamp-jan2015.pdf

​ *** add benchmarks to each section to show improvements from new features
4.​ RISC-V Pipelined Microarchitecture [DH: 12/31/21]

a.​ Hart
i.​ Integer Execution Unit
ii.​ Instruction Fetch Unit

1.​ how to deal with FSM that handles cache hits/misses, page table
walking

2.​ Dealing with two fetches on line wrap / spill
iii.​ Load/Store Unit (only TIM and SWR/SWW, others grayed out)
iv.​ IFU
v.​ Other units (to discuss later)

vi.​ Stalls and Flushes
1.​ Should CSR accesses flush rather than stall?

b.​ Uncore
5.​ Privileged Operations [DH 12/31/21]
6.​ AHB Lite Interface [Ross & DH 1/7/21]

a.​ Support fast cache line fills - bursts?
b.​ Adding bus in exclusion then in parallel with dtim/irom.

7.​ Caches [DH Intro, Ross write sections on testing and implementation target
Mid-November

a.​ Principles
b.​ RISC-V Practices

i.​ fence.i
c.​ Test Plan

i.​ TBD (maybe summer student)
d.​ Wally Implementation

8.​ Memory Management Unit [DH] July21
a.​ Discuss changes of having MMU

9.​ LSU [RT]
a.​ MMU in diagram but grayed out

10.​IFU [RT]
a.​ Principles: Branch Prediction

i.​ RISC-V branch prediction: resolved in execute, not decode
b.​ Test Plan

i.​ Specific to verifying branch prediction
c.​ Wally Implementation

i.​ Integrate cache
ii.​ Integrate MMU
iii.​ Integrate Branch Precition
iv.​ compressed grayed out

11.​Extensions: Compressed Instructions [DH 1/15/22]
a.​ RISC-V Principles

i.​ Uncompression
ii.​ Spills

iii.​ Interaction with cache
b.​ Test plan

i.​ spills
c.​ Wally Implementation

12.​Extensions: Multiplication and Division DH 10/31/21] Aug21
a.​ Multiplication

i.​ Carry-save addition
b.​ Division

i.​ By subtract and shift in non-redundant form, replicated for 2 bits per cycle
c.​ Forward reference to Floating Point Division chapter for integer SRT division

13.​Extensions: Floating Point [DH/JS late October James draft clean]
a.​ Floating Point Representation
b.​ Addition/Subtraction
c.​ Multiplication
d.​ FMA
e.​ Division and Square Root by Digit Recurrence
f.​ Division and Square Root by Iterative Approximation
g.​ Other Operations
h.​ Softfloat Test Suite (PARANOIA)

14.​Extensions: Atomic ***
a.​ LR/SC
b.​ AMO operations
c.​ using atomic operations for synchronization: locks, semaphores

i.​ See Linux book Ch 1 for summary
ii.​ Look at how Linux uses this
iii.​ Lotteries

15.​Peripherals [DH Spring]
i.​ GPIO
ii.​ CLINT
iii.​ PLIC
iv.​ UART
v.​ SD Card [Ross]

vi.​ SPI for 2nd edition?
vii.​

16.​High Performance Microarchitecture [SH: 12/1/21 or summer] Adapt from Hennessy &
Patterson?

●​ Introduction of each processor (show figures & tables plus few paragraph
overview)

a.​ Superscalar
b.​ Out-of-Order - talk about in more detail.
c.​ SIMD
d.​ Vector

Later:

e.​ Survey of Microarchitectures [SH, DH:]
i.​ Various SiFive

1.​ P650
ii.​ SweRV
iii.​ Other RISC-V

Andes
Alibaba
https://github.com/T-head-Semi?spm=a2cl5.14290816.0.0.d3ef1ae6lip5d
k

survey of RISC-V implementations?

Part 3: Implementation

17.​Benchmarking [DH, RT]
a.​ CoreMark

i.​ https://docs.google.com/document/d/1ZQA4TA-P2a-yO-jHqiQ7Lo-i-D80jk
AEoHTtcHbdHZI/edit

ii.​ (get steps from Abraham)
1.​ How to download
2.​ What has to change
3.​ How to compile & run it

cd tests/riscv-coremark/coremark
make (builds and runs)
cd ..
./transferobjdump.sh
cd ../../wally-pipelined/regression
vsim -c -do wally-coremark.do
Notes: Western Digital says IPC is about
1.03
Their CoreMark is good because of
compiler flags.

b.​ Embench - later - Skylar may work on this
1.​ How to download
2.​ What has to change
3.​ How to compile & run it
4.​ Look at
5.​ https://riscv.org/wp-content/uploads/2019/12/12.10-12.50a-Code-S

ize-of-RISC-V-versus-ARM-using-the-Embench™-0.5-Benchmark-
Suite-What-is-the-Cost-of-ISA-Simplicity.pdf

6.​ https://github.com/embench/embench-iot-results/blob/master/detai
ls/eh2-rv32imc-gcc-10.2-o2.mediawiki

7.​
8.​

c.​ Optimizations

https://github.com/T-head-Semi?spm=a2cl5.14290816.0.0.d3ef1ae6lip5dk
https://github.com/T-head-Semi?spm=a2cl5.14290816.0.0.d3ef1ae6lip5dk
https://docs.google.com/document/d/1ZQA4TA-P2a-yO-jHqiQ7Lo-i-D80jkAEoHTtcHbdHZI/edit
https://docs.google.com/document/d/1ZQA4TA-P2a-yO-jHqiQ7Lo-i-D80jkAEoHTtcHbdHZI/edit
https://riscv.org/wp-content/uploads/2019/12/12.10-12.50a-Code-Size-of-RISC-V-versus-ARM-using-the-Embench%E2%84%A2-0.5-Benchmark-Suite-What-is-the-Cost-of-ISA-Simplicity.pdf
https://riscv.org/wp-content/uploads/2019/12/12.10-12.50a-Code-Size-of-RISC-V-versus-ARM-using-the-Embench%E2%84%A2-0.5-Benchmark-Suite-What-is-the-Cost-of-ISA-Simplicity.pdf
https://riscv.org/wp-content/uploads/2019/12/12.10-12.50a-Code-Size-of-RISC-V-versus-ARM-using-the-Embench%E2%84%A2-0.5-Benchmark-Suite-What-is-the-Cost-of-ISA-Simplicity.pdf
https://github.com/embench/embench-iot-results/blob/master/details/eh2-rv32imc-gcc-10.2-o2.mediawiki
https://github.com/embench/embench-iot-results/blob/master/details/eh2-rv32imc-gcc-10.2-o2.mediawiki

18.​Linux Boot [KP, NB]
a.​ https://archive.fosdem.org/2020/schedule/event/riscv_bootflow/attachments/slide

s/4205/export/events/attachments/riscv_bootflow/slides/4205/FOSDEM_2020_Ati
sh.pdf

b.​ Boot Loader
c.​ Device Tree
d.​ Virtual Memory
e.​ Privilege Modes
f.​ Peripherals

19.​FPGA Implementation [JS/SH/KP]
a.​ Motivations
b.​ FPGA Design Flow
c.​ Bus Interface
d.​ External Memories
e.​ Optimization

20.​CMOS for Microarchitects [DH]
a.​ CMOS Transistors
b.​ CMOS Layout
c.​ Example: Skywater 45 (or 22?) nm Process
d.​ Cell Design
e.​ Floorplanning
f.​ Performance

i.​ RC Delay Model
ii.​ Logical Effort
iii.​ Wire Delay
iv.​ Repeaters

g.​ Power
i.​ Dynamic Power
ii.​ Static Power

h.​ Area
i.​ Building Blocks
j.​ Memories
k.​ Phase Locked Loops
l.​ Scan Registers
m.​ System-on-Chip Design

i.​ Moore’s Law
ii.​ Scaling
iii.​ Wires
iv.​ CAD Tools
v.​ Economics

1.​ [***maybe get estimate from David Garrett about costs for
startup]

vi.​ IP Reuse
vii.​ Dark Silicon (IEEE UDP)

21.​CMOS Implementation [TE]
a.​ Motivations
b.​ CMOS Design Flow

i.​ Standard cells
ii.​ Memories
iii.​ I/O

c.​ Low Power Design
d.​ Design for Test
e.​ Power, Performance, and Area Optimization

i.​ See report from Shreya nd Kip in slack synth channel Dec 27 2021
f.​ Low Power Methodology
g.​ Packaging
h.​ Commercial RISC-V Implementations

i.​ SiFive
ii.​ SWERVE

Second Edition

22.​RISC-V Superscalar Microarchitecture [DH with BB] [2nd edition?]
23.​RISC-V Out-Of-Order Microarchitecture [Ross?] [2nd edition?]
24.​RISC-V Threaded Microarchitecture [JS] [2nd edition?]
25.​More Bus Interfaces [SH, JS] [2nd edition?]

a.​ APB
b.​ AXI
c.​ Wishbone
d.​ Network on Chip

26.​Debug Interface [2nd edition]
27.​Multicore [SH 2nd Edition]

a.​ Cache Coherence
b.​ Synchronization: Atomic Instructions
c.​ Bus Arbitration

28.​SIMD [2nd edition]
29.​Vector [2nd edition]
30.​Bit Manipulation [2nd edition]
31.​Crypto (K) [2nd edition]
32.​Security [2nd edition]

a.​ Hardware features for security
b.​ Side channel attacks

Peripherals
i.​ SPI
ii.​ PWM?

33.​Silicon Debug [?]

Supplements

​ Tool installation: gcc, ovp, lint (verilator), modelsim, Synopsys & Cadence
​ ​ Imperas tests, git repo

OVP: Regarding riscvOVPsimPlus.exe, go to and choose version

 ​ https://www.ovpworld.org/library/wikka.php?wakka=riscvOVPsimPlus
​ Or switch to free simulator

Other Notes

The authors would like the book to be available in printed format and in permanent (non-rental)
ebook format at reasonable prices for students.

The length is still TBD but expected to be 400-800 pages. Target delivery September 2022.

An external website and open-source tools will be provided to accompany the text.

We plan to produce the manuscript in Google Docs and produce most figures in Visio and most
equations in MathType.

Author Bios

David Harris is the Harvey S. Mudd Professor of Engineering and Associate Engineering Chair
at Harvey Mudd College. He received his S.B. and M. Eng. degrees in Mathematics and
Electrical Engineering/Computer Science from MIT and his Ph.D. from Stanford University. His
research interests focus on digital systems. He is the author of Digital Design and Computer
Architecture, CMOS VLSI Design, Logical Effort, Skew-Tolerant Circuit Design, as well as
various Southern California hiking guidebooks. He has worked as a microprocessor designer at
Intel, Sun Microsystems, Hewlett-Packard, Broadcom, and elsewhere. He holds more than a
dozen patents in the field.

James Stine is the Edward Joullian Professor of Engineering at Oklahoma State University. His
area of research is in computer arithmetic, memory architectures, and Electronic Design
Automation (EDA) design flow. He is author of numerous articles on optimization of
architectures for use with computer arithmetic as well as interfacing to memory architectures.
He is author of three texts Digital Datapath Computer Arithmetic with Verilog, Adder
Architectures for VLSI Implementations and System on Chip Design Flow and Standard-Cell
Library.

Sarah Harris is an Associate Professor of Electrical and Computer Engineering at the University
of Nevada, Las Vegas. She graduated with her PhD from Stanford University in 2005 and is the
author of the Digital Design and Computer Architecture group of textbooks. She has also
worked at Hewlett Packard, Nvidia, and the Technical University of Darmstadt and has
collaborated with other companies including Southwest Research Institute, Intel, and
Imagination Technologies. Her research areas include computer architecture, reconfigurable

https://www.ovpworld.org/library/wikka.php?wakka=riscvOVPsimPlus

computing, and applications of embedded systems and machine learning to biomedical
engineering and robotics.

Writing Notes

Look at https://inst.eecs.berkeley.edu/~cs152/sp21/ for ideas, lots of images that would make
good sidebars.

https://inst.eecs.berkeley.edu/~cs152/sp21/

