“XBlock 27 Proposal

This proposal outlines a way to make incremental changes to XBlocks (and the LMS/CMS) to
improve some of the shortcomings of the current learning component architecture.

What do we need to fix?

XBlocks have been very successful and useful in their role as the building blocks of the Open
edX platform’s learning experience. However, experience has shown that the design of XBlocks
has a number of issues that holds the platform back today:

1.

XBlocks are slow and complex to render

To display an XBlock to a learner (or even to an instructor in Studio), a lot of “work” and
resources are required. First, the runtime must be initialized, then the field data must be
loaded from the database(s), then the XBlock “view” python code must be run, then the
resulting HTML and JS bundle must be sent to the browser, and combined with various
other JavaScript that the XBlock “expects” to be present. If you are [pre]viewing a page
with 100 XBlocks, some parts of this (like running the “view” python code) must happen
100 times.

No firewall between the LMS and XBlocks

XBlocks are written in python code and run as part of the LMS (or Studio) process.
XBlock code can therefore read, access, and modify any part of the platform or do
almost anything on the system (e.g. access full student records in the database, erase
the database).

Consequences:
a. you cannot install an XBlock unless you trust its author and have verified that the
code doesn’t do anything malicious, so in practice:
b. Only administrators can install new XBlocks; course instructors cannot.
c. XBlocks can do stuff that slows down the LMS (degrades performance)

No sandbox around user content

Whatever HTML code authors put into an XBlock or its various fields typically will appear
on the LMS page unescaped, which means that a malicious course author (or one who
was misled by phishing etc.) could put JavaScript code into an XBlock that exfiltrates
user data like session tokens.

Consequences:

a. Open edX administrators must be careful about who has permission to author
new courses, and access to course authoring must be restricted.

4. Sometimes vague API
There is an official XBlock python API that defines how XBlocks can interact with the
platform, and the LMS provides additional API extensions (e.g. self.location) and
services, but in practice XBlocks can (and do) call any python code they would like (e.g.
use “submissions”, declare django models, etc.). It's also unclear which parts of the
emergent API “should” be used and which should not.

The frontend (JavaScript) runtime also has a vague API - for example, the studio_view
passes a certain parameter to the initialization function as a jQuery element, while the
author_view passes it as a DOM element, which is completely different. (This
inconsistency is the sort of problem that TypeScript was created to solve.) Many XBlocks
assume that specific JavaScript libraries (like jQuery) are available, but don’t explicitly
declare that dependency.

Consequences:

a. It's hard to know what modifications to the platform will cause issues with existing
XBlocks, because they aren’t limited to a well-defined interface. This may slow
overall platform development.

b. The LMS must continue to load and include a whole bunch of huge JavaScript
files on every page, even if the LMS is no longer using them, because some
XBlock might need them. This is especially problematic when trying to render
many separate XBlocks on a page, each in its own iframe.

5. Specific to the Open edX LMS, but also LMS-agnostic
The XBlock APl was originally made with the intention that XBlocks would be used both
in Open edX and in some other learning platform(s) - specifically Google Course Builder;
however, that never really happened. In practice, the fact that XBlocks can only possibly
work in python-based LMSs fundamentally limits their applicability, and the fact that
XBlocks often depend on edx-specific APIs and conventions mean that they are not
portable at all.

Consequences:
a. The core XBlock APl and documentation is unnecessarily abstract (LMS
agnostic), and it can be hard for XBlock authors to figure out how to do common
things like “issue a score.”

6. No offline support
XBlocks fundamentally cannot run offline. Some workarounds are in place to allow
downloading some content (like videos) in the edX mobile app, but XBlocks in general
cannot work offline. Interactive XBlocks (that save user state or earn a score) in

https://github.com/google/coursebuilder-core/blob/master/coursebuilder/README

particular do not work at all, because there is no mechanism to sync with the server.

Consequences:
a. People who live without reliable access to the internet may be unable to use
Open edX.

b. People cannot use Open edX to learn when commuting on underground railways
or airplanes that lack a phone/Wi-Fi signal.

7. Arbitrary Composition
XBlocks can be “composed” by grouping several into an arbitrarily complex tree
structure: (a Sequential XBlock contains a Vertical XBlock which contains a Problem
Builder XBlock which contains a Short answer XBlock...)

Consequences:

a. XBlocks play both a structural role and a content role.

b. Determining the overall structure and metadata of a course (defined by XBlocks)
is so inefficient that several layers of workarounds and caching (CourseOverview,
block transformers, learning sequences API) have been developed to get the
course outline efficiently.

¢. The XBlock runtime has a lot of complexity (due to the need to support arbitrary
child XBlocks, though this functionality is not often used for content purposes).

Goals

Though | was previously thinking about a successor to XBlocks (“NeXBlocks”), | now have a
different set of goals in mind:

Priority goals:

e Make an incremental improvement to the XBlock architecture that will allow us to
“upgrade” existing XBlocks to address some of these problems without a major
rewrite

e Focus for now on improving rendering performance, to facilitate the full launch of
MFEs, and the removal of LMS static assets / legacy Ul.

o This addresses
https://openedx.atlassian.net/wiki/spaces/OEPM/pages/4205019182/Making+XBlo
ck+Preview+Fast in particular.

Maintain OLX compatibility backwards and forwards

Non-composable: every XBlock is a leaf node in the content tree; it cannot have children
and does not have a “parent” XBlock. Features like randomization, cohorting, and
adaptive learning should be implemented as part of the “course outline” itself, not by
composing XBlocks.

e Compatible with Learning Core

https://docs.google.com/document/d/1btnE7pIZccvlrDrJ8gHjEPfOrkMCZgSkgw8D9jXaLx4/edit#heading=h.90apnqnmcp86
https://openedx.atlassian.net/wiki/spaces/OEPM/pages/4205019182/Making+XBlock+Preview+Fast
https://openedx.atlassian.net/wiki/spaces/OEPM/pages/4205019182/Making+XBlock+Preview+Fast

Proposal Details

Fundamentally, | am now proposing we define a new “v2” XBlock standard that will address
some of the issues listed above, while keeping OLX compatibility and with a clear migration
path. XBlocks can “opt in” to the new v2 API on a per-block basis (e.g. the “video” block can be
upgraded to v2 while “problem” can remain on v1), but only the upgraded blocks will benefit
from the new APIls and performance.

At the same time, a “v2” standard that is an incremental change to the existing APIs won’t be
able to solve all or even most of the problems above. That’'s why | later want to propose a
ScriptBlock that implements the v2 API but allows authors to define new block types on a
per-course basis, in sandboxed JavaScript.

XBlock API v2

To start with, v2 XBlocks will be much the same as existing XBlocks: written in python, defined
by a class that inherits from XBlock, defined by entry points, etc. XBlocks that are upgraded to
v2 will declare that with in some statically analyzable way - either by subclassing “XBlock2” (if
they don’t need backwards compatibility) or by mixing in the XBlock2Mixin (if they are 3rd party
XBlocks that still want to be installable on pre-Sumac instances).

When opting in to the “v2” API:

1. XBlock “view” functions like “student_view”, “author_view”, “studio_view”,
“problem_view” etc. that return HTML are not used for v2 XBlocks. Instead,
XBlocks define a learner_view_data() function which returns JSON at the moment
the learner views the block. The default implementation is a no-op and many XBlocks
would be able to just use that.

2. XBlocks cannot access “parent” nor “children”

3. In development mode, something like an import linter or modulefinder is used to check if
the XBlock is importing any edx-platform APIs that aren’t part of the formal XBlock API. If
so, the XBlock class won’t be loaded, and a warning displayed.

4. XBlock client-side code must be self-contained ES modules (ESM) that don’t
assume the presence of RequireJs, React, jQuery, MathJax, or the presence of any
other “global” JS/CSS. However, some standard shared libraries will be pre-defined and
available for import as needed - preact, mathjax, possibly others.

5. The XBlock learner Ul for v2 XBlocks is a web component, which is not rendered in
an iframe but which may choose to be isolated from the surrounding CSS and JS
context.

https://github.com/openedx/XBlock/blob/6e88504b2f489c5560d6f589530b378cab59994a/xblock/core.py#L654
https://docs.python.org/3/library/modulefinder.html

o Iframes add a lot of complexity that we don’t need; we assume the XBlock
authors are trusted. If we later design a “ScriptBlock” that allows authors to define
new blocks using JavaScript, it would probably need to run in an iframe.

6. The client (JavaScript) runtime cannot call handlerUrl() anymore, but only the new
callHandler() method.

7. The .save() method is prohibited. Field values can only be modified during an
@XBlock.json_handler method or during the learner_view_data() function; otherwise
field data is read-only.

o This serves two purposes: (1) simplify and optimize the runtime by reducing the
number of places where XBlock field data gets written down to two, and (2)
facilitates automagic updating of field data on the frontend.

8. Field values can be optionally marked as “private”, in which case they will not be sent to
the frontend/browser.

Here’s how this speeds up rendering:

1. Instead, the backend does a couple database queries to load all the field data for all of
the XBlocks in the unit at once, then uses the static XBlock definitions to remove any
fields marked as “private” and validate/coerce the datatypes. For blocks that implement
learner_view_data(), the runtime is fully loaded and that function is also called to do
additional data updates/calculations/retrievals. Both the field data and any
learner_view_data is passed to the frontend JavaScript code. No HTML is generated on
the backend.

2. The frontend gets the (non-private) field data as a JSON object, along with any
learner_view_data.

3. For each XBlock type on the page, the frontend loads its JavaScript implementation and
renders the XBlock as a Web Component (custom element). This should not require any
additional network requests, if that block type has been seen by the user before.

4. No JavaScript/CSS is loaded other than what the XBlock explicitly depends on.

What would that look like?

Here’s a video showing how v2 Blocks render much faster:
w 2023 XBV2 RenderingSpeed.mov

Here’s what it looks like to convert a simple XBlock from v1 to v2:
https://github.com/open-craft/xblock-thumbs/pull/1/files

Note that converting a more complex block like video or problem is much, much, much more
complex due to the messy Ul code they have.

Here’s the proof of concept code | put together:

https://drive.google.com/file/d/12WPfuyMfeVIalasK_eKGJV0-Kc8hKKX4/view?usp=drive_link
https://developer.mozilla.org/en-US/docs/Web/API/Web_components/Using_custom_elements
https://github.com/open-craft/xblock-thumbs/pull/1/files

edx-platform#34887 - platform changes to create a new fast “render unit” API
XBlock#755 - changes to the XBlock repo itself to define the XBlock2 class/mixin.
frontend-app-learning#1402 - changes to the Learning MFE

XBlock Ul code can be type-checked, and the JavaScript APl is strictly defined. When
writing frontend code in an IDE, it will be aware of the API (TypeScript):

import { html, useFields, useCallback, callHandler, } from 'xblock2-client-v@';

ThumbsBlock(props) {

upvote = u callHandler{usageKey: string, handlerMame: string, body7:
callHandler{ Record<string, any> | undefined): Promise<Record<string,
) any>>

®
e

Call a JSOMN handler using POST. Most handler calls should use this.
downvote =

callHandler

"
r

XBlock Ul can choose to be isolated from the platform CSS or not

As implemented in the demos above, the “thumbs” XBlock renders in a shadow DOM (isolated
from the CSS environment and DOM tree of the parent page), whereas the “html” XBlock opts
out of isolation, so that the platform styles will apply to its content. Neither use an iframe. Note
this is not a security feature and doesn’t provide a true sandbox.

XBlock Ul code can be written in a modern, declarative style. When XBlock fields are
changed during a handler, the component is automatically re-rendered.

XBlock Ul code runs in isolated modules (ESM); nothing gets added to the global scope
unless you really try to do so by accessing ‘window’.

Most XBlocks will only depend on their own JS file (a few KB except for complex Uls like
video) and the shared “xblock-client-v0” JavaScript runtime (19KB minified).

What are some challenges with this approach?

1) Some blocks, like HTML and “Thumbs” are easy to port. Even capa should be relatively easy
if we don’t try to actually speed up its rendering and just use learner_view_data() to ship some
HTML to the frontend. However, other blocks like video, drag-and-drop-v2, ora2, etc. would

https://github.com/openedx/edx-platform/pull/34887
https://github.com/openedx/XBlock/pull/755
https://github.com/openedx/frontend-app-learning/pull/1402

essentially require a complete rewrite of their frontend code to benefit from this new API.
Personally, | think the video block needs that anyways.

2) Supporting both “v1” and “v2” blocks on the backend increases complexity. The system as a
whole won’t benefit from simplification until v1 support is no longer required on the backend.
However, it might be possible to solve this in the future by moving all v1 support code
(especially frontend) to a separate repo/shim.

3) My attempt to remove the hierarchy completely may make it harder to deal with randomized
content block, especially on the Studio side. | think it's possible to work around this in the LMS
by using block transformers to give learners the view of blocks they would see without actually
having to load the randomized content block runtime. On the backend it may not be possible
though.

4) Paragon wouldn’t be available in the slim preact-based client library. We could offer an
alternative version that includes React + Paragon, but it would be a huge dependency and
Paragon is still changing it's API frequently.

Other problems | noticed while researching this

1. The Learning MFE has a fon of console warnings and errors.

2. To get the list of units in a sequence, the Learning MFE calls the
lapilcourseware/sequence/:sequenceUsageKey API, which renders the student_view
of all the units in the sequence (get_metadata -> _get_render_metadata ->

render_student view_ for blocks) and each unit then tries to pick an icon for itself by
loading all the XBlocks in the unit, which includes bind_for_student() calling save() on
every block in every unit in the sequence; though the save() should be a no-op, this
seems very inefficient.

IFrame Pros and Cons

e [fthe XBlock frontend code is all written using React or Preact, there is generally no
security concerns around user-generated content (including authored content) except in
the places where XBlock authors explicitly use the dangerouslySetinnerHTML to
render user-provided HTML directly. In such cases, they can and should put it in an
<iframe> to isolate it, if that can be done without breaking compatibility.

e XBlocks which aren’t using React/Preact should be rendered inside an iframe for
backwards compatibility and security.

Cons of iframes generally:

https://github.com/openedx/edx-platform/blob/f3413fd767d28db4ef9678f284c82a695c881dea/xmodule/seq_block.py#L560
https://github.com/openedx/edx-platform/blob/f3413fd767d28db4ef9678f284c82a695c881dea/xmodule/vertical_block.py#L236-L240
https://github.com/openedx/edx-platform/blob/f3413fd767d28db4ef9678f284c82a695c881dea/xmodule/vertical_block.py#L236-L240

Resizing responsively isn’t perfect; can create jumps during rendering and “scroll traps”
on the page.

Rendering is generally slower as the content in the iframe (and all its dependencies)
doesn’t start loading until the iframe itself has been rendered.

Iframes break copy-paste. If you select text outside of the iframe and inside of the iframe
then paste into a text editor, only the text from outside the frame will be pasted. (try it)
Makes the implementation more complicated (postmessage and friends are required,
plus resizing code, etc.)

Pros of iframes generally:

If the iframe is on a different domain and the sandbox features are turned on, it provides
the strongest level of protection against authors injecting malicious JavaScript code into
the page, either accidentally or on purpose. It doesn’t depend on XBlock authors doing
the right thing.

	“XBlock 2” Proposal
	What do we need to fix?
	Goals
	Proposal Details
	XBlock API v2

	What would that look like?
	What are some challenges with this approach?
	Other problems I noticed while researching this
	IFrame Pros and Cons

