
1

Outfit System
An easy to use and powerful outfit management system for Unity.

V 1.0.0
● Incomplete documentation parts will be improved over time.
● Get the most up to date documentation by clicking here.
● Remember you can hover over fields in the “Inspector” window in Unity’s editor to read

tooltip explanations of each field.
● If you have any questions or need assistance email support at

intuitivegamingsolutions@gmail.com.

Table of Contents
1. Table Of Contents
2. Getting Started

2.a. Importing the Asset
2.b. Included Demo Scenes

- Make sure to 'Add To Build' the demo scenes before using the 'Catwalk/Closet' UI button(s).
2.c. Included Demo UI

3. The OutfitManager Component
4. Outfit Users

4.a. The OutfitUser Component
- Tracks the outfit data for an outfit user even across scenes.

4.b. The OutfitUserPresets Component
- Allows outfit presets to be specified for an outfit user..

4.c. OutfitUserSO ScriptableObject
- Contains the outfit data for a user.

4.d. OutfitPreset
- Holds data to describe an outfit preset.

5. Clothing
5.a. The Clothes Component

- A component that is attached to the root of a piece of clothing.
. 5.b. The ClothesSlot Enumerate

- Specifies all 32 possible clothes slots.

https://docs.google.com/document/d/1xa--V5JQuCpC_Q-4g0petiMVGj0gFb4dWsX5wM0dZRE/edit?usp=sharing
mailto:intuitivegamingsolutions@gmail.com


2

5.c. The ClothesSlotMask Mask
- A mask to specify any clothes slots.

5.d. ClothesSO
- Contains information about a specific piece of clothing. Used to track clothing types.

5.e. ClothesUtility
- A static class that provides useful methods for working with clothing, especially with clothing slot masks.

5.f. ClothesSlotDictionary
- A ClothesSlot key'd dictionary with a ClothesSO value that tracks what clothes item is in a given slot.

6. Tattoos
6.a. The Tattoo Component

- A component that is attached to the root of a piece of a tattoo.
. 6.b. The TattooSlot Enumerate

- Specifies all 32 possible tattoo slots.
6.c. The TattooSlotMask Mask

- A mask to specify any tattoo slots.
6.d. TattooSO

- Contains information about a specific tattoo. Used to track tattoo types.
6.e. TattooUtility

- A static class that provides useful methods for working with tattoos, especially with tattoo slot masks.
6.f. TattooSlotDictionary

- A TattooSlot key'd dictionary with a TattooSO value that tracks what tattoo item is in a given slot.

7. Attachments
7.a. The Attachment Component

- A component that is attached to the root of a piece of an attachment.
. 7.b. The AttachmentSlot Enumerate

- Specifies all 32 possible attachment slots.
7.c. The AttachmentSlotMask Mask

- A mask to specify any attachment slots.
7.d. AttachmentSO

- Contains information about a specific attachment. Used to track attachment types.
7.e. AttachmentUtility

- A static class that provides useful methods for working with attachments, especially with attachment slot masks.
7.f. AttachmentSlotDictionary

- An AttachmentSlot key'd dictionary with an AttachmentSO value that tracks what attachment item is in a given
slot.

8. Hairstyles
8.a. The Hairstyle Component

- A component that is attached to the root of a piece of a hairstyle.
8.b. HairstyleSO

- Contains information about a specific hairstyle. Used to track hairstyle types.

9. OutfitData
- Tracks outfit data for hair, all clothes slots, all tattoo slots, and all attachment slots.

10. FAQ

NOTE: See ‘API Reference.pdf’ (online) if you are looking for source code documentation for
the 'OutfitSystem' core module.

https://drive.google.com/file/d/16INdXoaBNdxJX4QJgtBdPKmTVodQqdXA/view?usp=sharing


3

Getting Started

2.a. Importing the Asset
There are 2 ways to import the 'Outfit System' package.

a. (Recommended) Using the Unity Editor ‘Package Manager’.
i. Open the Windows→Package Manager using the Unity editor toolbar.
ii. In the upper-left corner of the Package Manager window select ‘Packages: My

Assets’.
iii. Search for ‘Outfit System’ in the list or use the search bar in the window.
iv. Select the asset in the package manager, select ‘Download’.
v. After the package has finished downloading click ‘Import’ to import it into the

project.
b. Importing OutfitSystem.unitypackage

i. Using the Unity Editor’s toolbar select Assets→Import Package
ii. In the file explorer that opens navigate to OutfitSystem.unitypackage
iii. Double click the package and import it.



4

2.b. Included Demo Scenes
- *Important* Before using the included demo scenes 'Catwalk' or 'Return To Closet'

buttons make sure to add both the closet and catwalk scenes to your projects build using
the 'Add To Build' button. This allows the UI to swap between the two scenes.

- OutfitAndTatooDemo_Closet - a demo scene that allows you to pick between the
various hairstyles, clothes, tattoos, and attachments for the demo female.

- OutfitAndTatooDemo_Catwalk - a demo showing the demo female's outfit state being
automatically loaded when switching to a new scene (the catwalk scene) that loads the
last saved outfit user state for the demo female and provides a simple showcase scene.



5

2.c. Included Demo UI
- Table of include demo UI prefabs:

Prefab Name Description

UI_HairstyleSelection.prefab A UI prefab for selecting hairstyles.

UI_ClothesSelection.prefab A UI prefab for selecting clothes that includes a slot
selection dropdown, click-to-wear, and click-to-take-off
support.

UI_TattooSelection.prefab A UI prefab for selecting tattoos that includes a slot
selection dropdown, click-to-add, and click-to-remove
support.

UI_AttachmentSelection.prefab A UI prefab for selecting attachments that includes a
slot selection dropdown, click-to-attach, and
click-to-detach support.

UI_ConfirmationPanel.prefab A simple confirmation panel UI that is used in the demo
to request confirmation for actions like delete and
overwrite actions.



6

The OutfitManager Component

*A screenshot of the OutfitManager Inspector pane in the Unity Editor for v1.0.0*

- The OutfitManager is the main component in 'Outfit System'. It is responsible for defining and
managing hairstyles, clothes, tattoos, and accessories for a character.

- Hairstyle components can be referenced by the OutfitManager to define valid hairstyles.
- Clothes components can be referenced by the OutfitManager to define valid clothing.
- Tattoo components can be referenced by the OutfitManager to define valid tattoos.
- Attachment components can be referenced by the OutfitManager to define valid attachments.
- The OutfitManager maintains the current outfit state and manages object visibility for a single

outfit manager instance.
- Events:

Event Description Arguments

HairstyleChanged Invoked after the hairstyle has been
changed.

Arg0: Hairstyle - The last Hairstyle
component or null.
Arg1: Hairstyle - The new Hairstyle
component or null.
Arg2: OutfitManager - The
OutfitManager the hairstyle change
occurred on.



7

ClothesChanged Invoked after clothes in any slot have
been changed.

Arg0: ClothesSlot - The ClothesSlot that
was changed.
Arg1: ClothesSO - The scriptable object
reference for the last clothing info, or
null.
Arg2: ClothesSO - The scriptable object
reference for the new clothing info, or
null.
Arg3: OutfitManager - The
OutfitManager the change occurred on.

TattooChanged Invoked after a tattoo in any slot has
been changed.

Arg0: TattooSlot - The TattooSlot that
was changed.
Arg1: TattooSO - The scriptable object
reference for the last tattoo info, or null.
Arg2: TattooSO - The scriptable object
reference for the new tattoo info, or null.
Arg3: OutfitManager - The
OutfitManager the change occurred on.

AttachmentChanged Invoked after an attachment in any slot
has been changed.

Arg0: AttachmentSlot - The
AttachmentSlot that was changed.
Arg1: AttachmentSO - The scriptable
object reference for the last attachment
info, or null.
Arg2: AttachmentSO - The scriptable
object reference for the new attachment
info, or null.
Arg3: OutfitManager - The
OutfitManager the change occurred on.



8

Outfit Users
- The Outfit Users system allows you to easily track outfits, presets, settings, states, and more for

an outfit user.
- The Outfit Users system enables you to easily track the current outfit state through scene

changes where the character is re-created or already included in the scene.
- The demo includes a tutorial showing how the outfit user system can be leveraged to save the

users outfits and custom presets to and load them from a file.

4.a. The OutfitUser Component

*A screenshot showing the Inspector pane for the OutfitUser component in the Unity Editor. (v1..0.0)*

- The OutfitUser component must be attached to the same GameObject as an OutfitManager
component. This component is responsible for tracking the current state of the user's outfit and
storing it (or loading it from) a ScriptableObject, specifically a OutfitUserSO, as referenced using
the 'OutfitUser.user' field.

- You can leave this component out of your OutfitManager driven character if you do not need any
of the state saving or loading features provided by the outfit users system.

- The OutfitUser component implements two extremely important public methods that can be used
with Unity editor events and/or C# scripts to either save or load the relevant OutfitManager's state
to or from the relevant OutfitUserSO ('OutfitUser.user' field):

- public void SyncOutfitToUserData()
- Syncs the relevant OutfitManager with data from the relevant OutfitUserSO.
- This clears the relevant OutfitManager's current outfit (hairstyle, clothes, tattoos, attachments) and attempts to

activate all valid outfit items from the items referenced by the relevant OutfitUserSO.
- public void SyncUserDataToOutfit()

- Syncs the relevant OutfitUserSO with data from the relevant OutfitManager.
- This checks hairstyle and iterates through clothes, tattoos, and attachments checking for valid attire

and populates the relevant OutfitUserSO so that it matches the outfit currently being worn by the
OutfitManager.

- The OutfitUser component also implements Unity editor events for common Unity events such as
Started, Enabled, Disabled, and Destroyed to allow you to easily configure editor events for
situations where you want the simplest set up where you want to invoke



9

'OutfitUser.SyncOutfitToUserData()' on 'Started (Unity's Start() callback)' as shown in the screenshot
above.



10

4.b. The OutfitUserPresets Component

*The Inspector pane in the Unity Editor for the OutfitUserPresets component. (v1.0.0)*

- The OutfitUserPresets component is attached to the same GameObject as an OutfitUser.
- This component may be left out if you do not need or want preset support for an outfit user (or if

you are using an OutfitManager without an OutfitUser).
- The OutfitUserPresets component allows the developer to specify OutfitPreset entries in the

editor and/or add or remove them at runtime using the scripting API.
- Each OutfitPreset entry may specify the following:

Field Description Type

Outfit Name The name of the outfit preset. string

Apply Hairstyle When applied does this outfit preset
override hairstyle?

bool

Apply Clothing When applied does this outfit
override clothing?

bool

Apply Tattoos When applied does this outfit
override tattoos?

bool

Apply Attachments When applied does this outfit
override attachments?

bool

Outfit Data The actual OutfitData that tracks
what outfit items are in the outfit
preset.

OutfitData



11

4.c. OutfitUserSO ScriptableObject

*A partial screenshot of the Inspector pane when selecting an OutfitUserSO. (v1.0.0)*

- The OutfitUserSO is a ScriptableObject implementation that contains OutfitData and is
intended to contain the current outfit state for an OutfitUser.

- The OutfitUserSO scriptable objects provide a convenient way to visualize and modify
the current outfit state for an outfit user from within the editor.



12

4.d. OutfitPreset

*A screenshot showing the property drawer for an OutfitPreset instance in the Unity Editor Inspector pane, outfit data section is collapsed. (v1.0.0)*

- An OutfitPreset is a class (data type) that contains a name, type-application settings, and
OutfitData that describes the hairstyle, clothes, tattoos, and attachments for an outfit and
which elements of an outfit the preset overrides.

- Here is an overview of the fields:

Field Description Type

Outfit Name The name of the outfit preset. string

Apply Hairstyle When applied does this outfit preset
override hairstyle?

bool

Apply Clothing When applied does this outfit
override clothing?

bool

Apply Tattoos When applied does this outfit
override tattoos?

bool

Apply Attachments When applied does this outfit
override attachments?

bool

Outfit Data The actual OutfitData that tracks
what outfit items are in the outfit
preset.

OutfitData



13

Clothing

5.a. The Clothes Component



14

5.b. The ClothesSlot Enumerate



15

5.c. The ClothesSlotMask Mask



16

5.d. ClothesSO



17

5.e. ClothesUtility



18

5.f. ClothesSlotDictionary



19

Tattoos

6.a. The Tattoo Component



20

6.b. The TattooSlot Enumerate



21

6.c. The TattooSlotMask Mask



22

6.d. TattooSO



23

6.e. TattooUtility



24

6.f. TattooSlotDictionary



25

Attachments

7.a. The Attachment Component



26

7.b. The AttachmentSlot Enumerate



27

7.c. The AttachmentSlotMask Mask



28

7.d. AttachmentSO



29

7.e. AttachmentUtility



30

7.f. AttachmentSlotDictionary



31

Hairstyles

8.a. The Hairstyle Component

- The Hairstyle component is intended to be attached to any GameObject on a character (even an
empty one) and will activate and deactivate said GameObject as said Hairstyle is made the active
one, or made inactive respectively.

- The 'Info' field is where the relevant HairstyleSO scriptable object that this Hairstyle implements is
specified.

- The 'Active Transforms' setting allows you to reference Transforms that are non-children of the
Hairstyle component's GameObject. The Transforms' GameObject will then automatically be
activated when this Hairstyle becomes active and deactivated when the Hairstyle becomes
inactive.

- The 'Deactivate Transforms' setting allows you to reference Transforms that you want to be
automatically deactivated when this Hairstyle becomes active and reactivated when the Hairstyle
becomes inactive.

- The occlusion settings allow you to specify slots for clothes, tattoos, and/or attachments that you
want to be automatically hidden while this Hairstyle is active (not unequipped, just hidden).

- The 'Made Active' Unity editor event is invoked whenever the Hairstyle (argument #1) is made active
for a given OutfitManager (argument #2).

- The 'Made Inactive' Unity editor event is invoked whenever the Hairstyle (argument #1) is made
inactive for the given OutfitManager (argument #2).



32

8.b. HairstyleSO

- The HairstyleSO scriptable object is responsible for defining the type for a hairstyle.
- Similarly to ClothesSO, TattooSO, and AttachmentSO, the HairstyleSO scriptable object is used

to define unique types which will then be referenced by a character-specific Hairstyle component.
The HairstyleSO is responsible for allowing a given hairstyle to be identified in a
character-independent way.



33

OutfitData

*A partial screen capture showing the property drawer for an OutfitData instance as seen in the Unity Editor Inspector pane. (v1.0.0)*

- The OutfitData class (data type) contains a reference to the current HairstyleSO that is
'equipped' according to the outfit data.

- The OutfitData class (data type) contains an enumerate key'd dictionary (ClothesSlot,

TattooSlot, AttachmentSlot) for clothes, tattoos, and attachments that specify which relevant
scriptable objects (ClothesSO, TattooSO, AttachmentSO), if any are in a given slot according to the
outfit data.



34

FAQ
(Frequently Asked Questions)

Q: I am getting an error saying the 'OutfitAndTattooDemo_Closet' and/or
'OutfitAndTattooDemo_Catwalk' scenes have not been added to the build when clicking the
'Return To Closet' or 'Catwalk' UI button(s) in the catwalk or closet demo scenes respectively.
A: This warning appears when you've forgotten to add the demo scenes to the build settings of
your project using 'File → Build Settings… → Add Open Scenes'.
Simply add the scenes to build settings.
It is recommended when you are done with the demo scenes to remove them from 'Build
Settings' if you do not plan to include them on the release build for your project.

*A screenshot showing the demo scenes added to the 'Build Settings' of a project.*


